

 Optimized Student Data Sorting Using Quicksort:

A DAA - Based Approach and Excel Integration

Akshata Laddha1, Radhika Mahalle2, Sanket Nevase3, Pradyuma Rokade4, Gauri Ghule5

Electronics and Telecommunications Department

Vishwakarma Institute of Information Technology

Pune, Maharashtra, India

akshata.22211073@viit.ac.in, radhika.22210203@viit.ac.in , sanket.22211039@viit.ac.in ,pradyuma.22211506@viit.ac.in,

gauri.ghule@viit.ac.in

Abstract—This is a Java-based solution to the sorting

of student data and exporting it to an Excel Spreadsheet

by using the Apache POI library. Students' information

such as roll numbers, names, and marks in English,

Mathematics, and Marathi, is gathered and average

marks computed. User can sort data according to their

demand on individual subject marks or average marks

with the quicksort algorithm. Data is then exported in a

sorted manner to an Excel file, which becomes a more

practical handling of student data within academic

institutions. The implementation showed good data

management and sort techniques with much emphasis on

automation and user interaction.

Keywords: Sorting algorithms, Quicksort, student

data, DAA, Apache POI, Excel export, educational

datasets.

I. INTRODUCTION

Where volumes of data and information grow
exponentially and complexity increases, the need for effective
mechanisms to process data has become quite essential in
recent times. Sorting algorithms are usually the heart of most
computational tasks, allowing data to be managed in such a
way that access and analysis are increased. Quicksort is
perhaps one of the strongest and widely used algorithms,
especially within Data Structures and Algorithms (DAA).
This algorithm is mostly known to sort large datasets
efficiently. Quicksort provides immense advantages, in terms
of efficiency and resource optimization compared to other
traditional sorting algorithms.[1]

This paper is the method of optimizing a student records
management system by the inclusion of Quicksort algorithm
in utilization of Excel which is the most widely used tool in
manipulating data in academic and administrative premises.
The demand for this paper stems from its intention to prove
through the demonstration of how Quicksort is an efficiently
partitioning and recursive sorting algorithm that can enable
one to make the exercise of retrieving and organizing records
pertaining to students faster. The proposed system utilizes the
divide-and-conquer capability of Quicksort to greatly improve
the performance characteristics of the sorting operations,
hence, data retrieval becomes faster as search capabilities and,
by extension, a better system efficiency.[2][3]

Furthermore, combining Quicksort with Excel automates
organization and optimizes it in such a way that its practical
application will be eased in teaching. Thus, using this familiar
platform, such as Excel-assigned work accessible to non-
programmers, will narrow the gap between theoretical
computational algorithmic theory and real-world applications
of advanced techniques. It will make such techniques much
more practical and applicable for people in charge of large

datasets of student grades, attendance, or enrollment records,
who represent the majority of administrators and educators.

In the following sections, we are going to deconstruct the
theoretical framework of Quicksort. We'll point out its three
main components: pivot selection, partitioning, and recursion.
Next, we'll show you how to practice the amazing Quicksort
algorithm in Excel by listing out the steps and instruments we
use to implement it within it. Finally, we will discuss the merit
of the proposed method by giving a comparative analysis of
the improvement in terms of performance won using
Quicksort, mainly related to time complexity, scalability, and
resource utilization. The case studies will also extend to how
such methodology can be used for similar applications other
than data of students, making it more diverse and having a
higher impact on managing data in educational institutions as
well as elsewhere.[3]

II. PROBLEM DEFINATION

The management of students is an activity in a school
education because the institutions handle masses of
information while in the process. These categories include
academic records, personal information, and grades. Keeping
them sorted efficiently in advance can help with certain
administrative functions that include ranking students to
produce report cards and numerous educational as well as
administrative activities.

This is a data set so large that traditional sorting algorithms
often become quite inefficient to traverse it, result in delays
and excessive resource consumption. Such inefficiencies may
affect any decision and disturb the smooth workflow of
education making yet another case for the need of a better
solution.

Objective of the Project: This project seeks to eliminate the
problems associated with the sorting of student data with
efficient sorting algorithms. A good number of objectives
have been laid down, which include:

1. Utilization of Efficient Sorting Algorithms: Designing
advanced techniques with the capability of managing large
data sets, essentially using time and space complexity for
optimal performance. These are to be applied for far faster
sorting than general techniques will allow.

2. Sorting Flexibility on Multi Criteria: Student’s data to
be sorted based on multiple criteria. This will include the
following criteria:

a) Roll No.: Each student will have a unique roll number,
so that he can be identified.

b) Name: Students' names will also be sortable, and users
can also be able to sort them easily.

International Journal Of Educational Research 127 (2024)

PAGE NO : 131

mailto:akshata.22211073@viit.ac.in
mailto:radhika.22210203@viit.ac.in
mailto:sanket.22211039@viit.ac.in
mailto:pradyuma.22211506@viit.ac.in
mailto:gauri.ghule@viit.ac.in

c) Marks of Subject: The system will be having the
flexibility to be sorted according to marks as per each subject:

(i) English Marks: The scores in English will be the
leading sorting criteria.

(ii) Mathematics Marks: The marks in Mathematics also
can be used as a sorting.

(iii) Marathi Marks: Then, the students' performance in
Marathi will be utilized as a further criterion for organization.

(iv) Mean Marks: It calculates the total marks for the three
subjects: English, Mathematics, and Marathi. So, there is
another average to sort on.

3. Export Functionality for Data: The sorted data would be
exportable into Excel for easier readability and visualization.
This allows the user to build reports and further analyze the
information in the sorted order.

Importance of the Project: It aims at streamlining procedures
for data management involving students within an educational
institution through efficient sorting algorithms and flexible
sorting criteria. The expected outcomes include:

(a) Efficiency Improvement: Time taken for sorting and
resource utilization will increase performance as a
whole in managing student data. Friendly User
Interface: Multiple sorting options make retrieval
and further analysis easier for administrators and
educators based on their detailed needs.

(b) Improved reporting: the excel-exported sorted data
may be visualized and reported to the management
with clarity in well-structured data, to make
appropriate decisions.

(c) This project is a landmark event in modernizing
student data management systems, ensuring the
smooth running of education institutions in this more
data-driven world.

III. LITERATURE REVIEW

 Quicksort. C.A.R. Hoare invented this one of the fastest

sorting algorithms that use a divide-and-conquer technique

with a pivot to sort in place; it is well suited to large datasets

where memory may be constrained. Its average time

complexity is O(n log n).[1]

 Although so much research has been on its efficiency, its

worst-case complexity of O(n²) has led to a lot of

optimizations. The works by Devi and Khemchandani (2011)

and others began suggesting better pivot selection and

multi/dual-pivot techniques which experimental studies

demonstrate outperform the traditional Quicksort, especially

when dealing with big data.[2]

 Paper[3] SMS-Algorithm A Sub-Type of Quicksort

Improves the Sort process of three temporary arrays divided

according to the property: positive, negative and frequent.

The new method accelerates the process especially if all

elements are unique.

This thesis examines the basic and advanced algorithms for

sorting, namely Bubble Sort, Insertion Sort, Quick Sort,

Merge Sort, and Radix Sort. It shows that no algorithm is

universally optimal. It also presents a class of priority-based

sorting algorithms that can be used in optimizing

performance with specific data types.[4]

 This paper analyses time complexity for Bubble Sort,

Insertion Sort, Selection Sort, Merge Sort, and Quick Sort

using dynamic data structures; the main contribution of this

work is the identification of the algorithm called Merge Sort

as the best for large data sets, concluding that Insertion Sort

excels when dealing with small sizes, where execution time

is what defines the best algorithms.[5]

 It was also descriptive of how visual representations, such

as in the case of selection sort, bubble sort, and merge sort,

improve a student's understanding and learning. Additionally,

this paper describes a web-based tool for graphically studying

the behavior of these algorithms, thus making the process

more engaging and intuitive for a student's learning.[6]

 This review has to do with the development of intelligent

information processing systems and their application in

managing large datasets for analysis. It thus has high points

of improvement for artificial intelligence and learning for

better decision-making accuracy and proper execution of data

processing in real time from different domains.[7]

 This critique compares the time and space complexity of

sorts like bubble sort, selection sort, insertion sort, merge

sort, and quick sort algorithms regarding the size of input and

randomness in the sequence. The latter concludes that simple

algorithms work well on small or ordered datasets; otherwise,

random or large data is best suited for quick or merge sorts,

and they are flexible to specific applications. [8]

 For the Quicksort algorithm, appropriate selection of the

pivot, preferably the average of the first, middle, and last

elements, is critical to improve the time complexity and

partitioning efficiency. Although the recursive approach is a

simplification in the design, stack space will be heavily

utilized, so researchers advocate optimized stack

management to reduce the amount of stack usage during the

execution.[9]

IV. METHODOLOGY

(4.1) Input Data:

The dataset utilized for this project has minimum student

information as follows:

Roll No: Integer

Name: String

Marks in English: Double

Marks in Math: Double

Marks in Marathi: Double

Average Marks: This is computed as the average of marks

obtained in English, Math, and Marathi.

 The number of students and their respective details are

asked to be stored in arrays. It automatically calculates the

average marks on entry. It is in this manner that this system

helps the process make use of a massive amount of data very

efficiently, with all such required information being

calculated and then stored before being sorted.

International Journal Of Educational Research 127 (2024)

PAGE NO : 132

(4.2) Sorting Algorithms:

In this work, we use the Quicksort algorithm, which is one of

the most efficient comparison-based sorting algorithms that

uses the divide-and-conquer approach. The Quicksort

algorithm has been selected because of its optimal

performance with a large data set to be sorted; it achieves a

time complexity of O(n log n) as an average. Select a pivot

element and partition the array into two sub-arrays. One

contains elements smaller than the pivot, and the other

contains elements larger than the pivot. Continue applying

the algorithm to these sub-arrays until you hit the base

case.[4]

Quicksort Algorithm Steps:

Partition: It picks a pivot element and moves the elements of

the given array in such a way that the elements smaller than

the picked pivot will be placed before it and the elements

greater than the picked element will be placed after it.

Recursion: Following the partition logic, the above step is

applied recursively on the sub-arrays on both sides of the

pivot.

Base Case: The recursion stops when the sub-arrays have

only one element each.

The algorithm is highly efficient enough to allow it to handle

a large number of students, and thus, several datasets.[5]

(4.3) User Interface:

The system includes an interactive console interface for input

of student data and choice of criteria through which the

student records are to be sorted on the basis of:

1. Sorting by English Marks

2. Sorting by Math Marks

3. Sorting by Marathi Marks

4. Sorting by Average Marks

Then, based on which option the user has chosen, Quicksort

sorts student data. Finally, with the student data sorted, the

system outputs them into the console and writes them to an

Excel file for further use: The flexibility this interactive

selection offers makes the system highly adaptable to

different educational use cases.

(4.4) Export to Excel using Apache POI:

The application uses the library Apache POI to export student

data in an Excel workbook to be sorted and analyzed. Two

sheets are created:

Before Sorting: This is the unsorted raw data.

After Sorting: This sheet has data sorted based on criteria

chosen by the user: English, Math, Marathi, or Average

Marks.

Step over the procedure

Creation of Workbook: New Excel Workbook

Sheet Creation: Two sheets, "Before Sorting" and "After

Sorting."

Data Population: The rows are filled with the details of

students (Roll No, Name, Marks, etc.).

File Output: The workbook is written in an Excel file

(StudentData.xlsx) based on the FileOutputStream.

This export feature allows making sense of it easily and

sharing as well as generating reports, thereby making the

system highly practical for educational use.

V. IMPLEMENTATION

The system is developed using Java and makes use of the

Apache POI library for importing student details into Excel

sheets. The most prominent key parts involved in

implementation are as follows:

(5.1) Input and Data Handling:

It uses a Scanner class to take details about a student, roll

numbers and their names, and marks scored in subjects like

English, Math, and Marathi. All these details are stored in

arrays for easy manipulation. Besides, while taking the data,

it also calculates the average marks scored by each student

and stores it in another array. This makes easy data handling;

hence, the basis for more operations like sorting.

(5.2) Quicksort Algorithm:

The sorting logic in the system is based on the "Quicksort

algorithm", widely known as an efficient sort technique. The

implementation is done as follows:

1. Recursive Quicksort Function:

It takes the array of marks (arr) with corresponding student

names (names) and roll numbers (rollNos) through the

quickSort method recursively. The technique employed here

is divide-and-conquer. It divides the data set into small pieces

in accordance with the pivot element and sort them

recursively.

2. The Partitioning Process:

This function, partition, selects the rightmost element in the

list as the *pivot* and moves elements less than the pivot to

the left of the pivot and elements greater than the pivot to the

right. It creates a list in which the pivot is in its appropriate

position.

3. Swap elements:

As the partitioning goes on, the elements move around to

keep their correct order with respect to the pivot. Now, since

the corresponding elements of the *names* and *rollNos* are

swapped, the coherence in student details with respect to

marks is also maintained.

4. Recursive Division:

Lastly, the quickSort function calls itself to recursively sort

the subsets in both directions of the pivot. In this way it keeps

going on, till the whole array is completely sorted with help

of the selecting sorting criterion like English, Maths, Marathi,

or marks average.

5. Efficient Sorting:

It efficiently sorts the dataset with an average time

complexity of O(n log n). Thus, the system is useful in

handling really big datasets. Ensures that the names and roll

numbers get matched in correlation to the sorted marks.[9]

International Journal Of Educational Research 127 (2024)

PAGE NO : 133

(5.3) Excel Export:

1. Creation of Workbook: A new XSSFWorkbook object is

created to represent the entire Excel file.

2. Sheets Setup: Two sheets are added in the workbook that

will be named "Before Sorting" and "After Sorting" where

student data will be stored before and after sorting.

3. Export Data: The function createExcelSheet is twice used,

one for each sheet passing an array of student details

containing roll numbers, names and marks, English, maths,

Marathi and average marks.

4. Data Consistency: The same arrays for roll no's, names and

marks for both sheets are used so the data before sorting and

after sorting also appears alongside each other for easy

comparison.

5. Reusability: The usage of the createExcelSheet method

must ensure code reusability by applying the same structure

to both "Before Sorting" and "After Sorting" sheets.

VI. PERFORMANCE ANALYSIS

1. Efficiency and Complexity:

Application of Quicksort Algorithm: The paper makes use of

the Quicksort algorithm, in general, which has an average

time complexity of O(n log n). It is efficient for handling big

data; so, it can also be used for dealing with student data that

need very fast optimizations for sorting.

Worst-Case Complexity: The worst-case scenario, O(n²),

may be obtained with bad choices for the pivot. However, the

paper does provide an idea about advanced pivot selection

mechanisms that prevent such a scenario.[2]

2. Multiple Parameters Sorting

Sorting based on multiple parameters. Sorting can be done on

different variables like roll numbers, names, marks in

English, Math, Marathi and average marks. This flexibility

increases the usability of the system used in multiple

educational needs.

User Interaction: It allows for easy sorting of data in the paper

by different criteria that makes it even easier to use for non-

technical users. The console interface allows for access and

enhances the usability of the system.[1]

3. Data Management and Export

Apache POI for Export to Excel: The application employs

Apache POI such that the sorted data will be exported to

Excel for easy reporting and analysis. This export feature is

very practical for the educator and administrator.

Sorted and Unsorted Sheets: The implementation creates two

sheets - before and after sorting, which allows users to

compare and validate sorting results efficiently.

4. Performance Improvements

Time Complexity: It is assured to have efficient performance

with large data due to its Quicksort selection. Breaking the

problem down into similar subproblems, and addressing all

of them separately with the divide-and-conquer strategy

greatly enhances resource usage compared with such naive

algorithms such as Bubble Sort or Insertion Sort.

Scalability: Since the system will easily cope with data sets

consisting of thousands of students, it is scalable and

appropriate for educational institutions of any size.

Resource Optimization: Since Quicksort is an in-place

algorithm, it uses very minimal overhead memory; hence, the

system can be used in environments with constrained

computing resource.[1]

5. Usability and Practicality

Educational Application: The Excel interface enhances the

practical application in schools so that administrators can

manage the sorted data easily. Decision-making in areas such

as ranking students and reporting is enhanced.

Automation: In the sorting as well as exporting process,

automation does not require much effort from the individual

because data management helps in simplifying the tasks.

6. Comparison with Other Algorithms

The author compares Quicksort with other algorithms in

mind, such as Bubble Sort and Insertion Sort, and highlights

how algorithms like these performed quite pathetically with

larger datasets at hand whereas Quicksort does pretty well as

its time complexity is relatively low in most cases.[4][8]

This visual comparison underscores Quicksort is often

preferred for sorting large datasets, as it offers a significant

performance advantage over simpler algorithms like Bubble

Sort, Insertion Sort, Merge Sort, Heap Sort.[10]

VII. RESULTS

The outcome of the project indicates that the system is

efficient and effective in sorting and dealing with student

data, according to different criteria of academic performance.

The system is able to:

(6.1) Take in Student Data Correctly and Process It:

International Journal Of Educational Research 127 (2024)

PAGE NO : 134

The same can be done quite easily with a console-based

interface to input student data including roll number, name,

and marks obtained in three subjects - English, Maths, and

Marathi. Here, human intervention-free average marks are

computed at the time of entry.

(6.2) Efficiency of Sorting using Quicksort

The core functionality of this system is to sort the student data

according to the chosen marks (English Marks, Maths Marks,

Marathi Marks, or Average Marks) selected by the user. The

Quicksort algorithm was adopted due to its efficiency in

sorting large datasets. Testing proved that the algorithm

worked correctly on sorting the student data in ascending

order according to the chosen marks for most cases of

different sizes and especially it provided the optimal

performance with the time complexity O(n log n).

It maintained the correct student names, roll numbers along

with the corresponding marks throughout the entire process

of sorting without data duplication[7].

(6.3) User Interactivity and User Flexibility

The program has been developed in a flexible interface to

allow user choice for the criteria of sorting through a simple

console menu as shown below:

Sorting by individual marks obtained in one particular subject

or average marks scores in general

Dependency on changing user requirements for some

possible event in academic analysis work.

(6.4) Excel Export Functionality

It then imports the unsorted data and sorted data into an Excel

file with Apache POI. Two Excel sheets are created for the

above:

Input Data: It is the raw, unsorted student data as entered into

it.

Result Data: This sheet will display the data after sorting by

the chosen criterion.

This feature further enables the analysis of student data

outside the system because educational institutions can

always use the Excel files to perform reporting, sharing, and

administrative activities. With this, the Excel file format

ensures that it is compatible with other data management

tools.

(6.5) Comparison of Sorting Criteria

All the test cases of sorting criteria gave us consistent results.

Whether sorted on English, Maths, Marathi or Average

Marks, the data was correctly presented and the system never

made any errors while performing this operation or showed

significant delay.[8]

Example Results:

Roll No Name English Maths Marathi Average

101 Alice 85.00 90.00 88.00 87.67

102 Bob 78.00 82.00 79.00 79.67

103 Charlie 92.00 85.00 91.00 89.33

This is a sample of sorted data when all averages are selected

as the criteria for sorting. In all of the above options, the

system produced accurate results.

VIII. CONCLUSION

Investigating the optimization of sorting student data using

Quicksort with a focus on communicating with Excel so we

make emphasis upon how high the efficiency and

practicability of this method is, even on large-scale datasets

of students. Quicksort is a divide-and-conquer algorithm;

therefore, its average-case time complexity is O(n log n). This

makes its application especially appropriate for educational

institutions that handle large volumes of student data that are

frequently sorted on different criteria such as names, grades,

or registration numbers. The DAA-based approach throws

more light behind the performance of Quicksort with optimal

depth as compared to other related sorting algorithms such as

Merge Sort and Heap Sort. This approach itself underlines the

fast efficiency of Quicksort and allows it to contend against

different datasets without requiring any additional space that

is a prerequisite in computationally heavy constraint

environments. In short, introducing Excel into this solution

adds high value, mostly due to its pervasiveness in academic

circles for the purposes of data management. User-

friendliness combined with the powerful sorting abilities of

Quicksort give excellent usability with the faculty list which

can be adequately manipulated also by students without much

advanced programming knowledge. Excell allows for many

features, such as the visualization of data, filtering, and the

use of pivot tables-all supporting and supplementing the

processes of sorting. This therefore makes it easier for these

administrators, teachers, and other staff members to have

decisions that are effectively derived from well-set data. This

study will depict how this strategy applies in broad

educational institutions, balancing both theoretical algorithm

efficiency and practical needs of data management. Thus, the

algorithmic efficiency of Quicksort merged with the usability

of Microsoft Excel will give an optimal solution for high-

performance sorting as well as ease of access and shall be

widely implemented.[7][2]

IX. FUTURE WORK

1. Parallelization of the Sorting Algorithm: Future work can

include parallelizing the Quicksort algorithm using multi-

threading to enhance the performance in terms of efficiency

whenever a large dataset is involved and requires processing.

This would ultimately result in less processing time, greater

efficiency, and less pressure in dealing with large datasets.

2. It implements other alternative algorithms too; although

the Quicksort algorithm worked well, it still remains a

possibility that an algorithm like Merge Sort may give better

stability and consistency while dealing with larger complex

data.

3. Improvement in the Development of User-Friendly GUI:

The GUI also has to be made more user-friendly for the non-

technical persons. A system could be developed towards

achieving user-friendliness in having an intuitive design and

friendly features.

4. Support Larger Datasets: As the size of the data grows,

future work could be focused on other optimizations

including external sorting techniques for handling the dataset

International Journal Of Educational Research 127 (2024)

PAGE NO : 135

that is larger than the available system memory in order to

make the system scalable and applicable to broader data

sources.[7]

X. REFERENCES

[1] A. DEV MISHRA and D. GARG, “Selection of

Best Sorting Algorithm,” Int. J. Intell. Inf.

Process., vol. 2, no. December, pp. 363–368, 2008,

[Online]. Available:

http://www.gdeepak.com/pubs/Selection of best

sorting algorithm.pdf

[2] M. S. Hossain, S. Mondal, R. S. Ali, and M. Hasan,

Optimizing complexity of quick sort, vol. 1235

CCIS. Springer Singapore, 2020. doi:

10.1007/978-981-15-6648-6_26.

[3] R. Mansi, “Enhanced Quicksort algorithm,” Int.

Arab J. Inf. Technol., vol. 7, no. 2, pp. 161–166,

2010.

[4] R. C. Pandey, “Study and Comparison of Various

Sorting Algorithms,” no. July, 2008.

[5] J. Maier, A. Kandelbauer, A. Erlacher, A. Cavaco-

Paulo, and G. M. Gübitz, “Comparison Study of

Sorting Techniques in Dynamic Data Structure,”

Appl. Environ. Microbiol., vol. 70, no. 2, pp. 837–

844, 2004, doi: 10.1128/AEM.70.2.837-844.2004.

[6] “VISUALIZING SORTING ALGORITHMS By

Brian J . Faria An Honors Project Submitted in

Partial Fulfillment Of the Requirements for Honors

in The Department of Mathematics and Computer

Science Faculty of Arts and Sciences Rhode Island

College,” 2017.

[7] X. Wang, “Analysis of the time complexity of

quick sort algorithm,” Proc. - 2011 4th Int. Conf.

Inf. Manag. Innov. Manag. Ind. Eng. ICIII 2011,

vol. 1, pp. 408–410, 2011, doi:

10.1109/ICIII.2011.104.

[8] Y. Yang, P. Yu, and Y. Gan, “Experimental study

on the five sort algorithms,” 2011 2nd Int. Conf.

Mech. Autom. Control Eng. MACE 2011 - Proc.,

pp. 1314–1317, 2011, doi:

10.1109/MACE.2011.5987184.

[9] C. A. R. Hoare, “Algorithm 64: Quicksort,”

Commun. ACM, vol. 4, no. 7, p. 321, 1961, doi:

10.1145/366622.366644.

[10] Https://ds1-iiith.vlabs.ac.in/exp/bubble-

sort/analysis/comparison-with-other-

algorithms.html, “Comparison of Different Sorting

Algorithms.” [Online]. Available: https://ds1-

iiith.vlabs.ac.in/exp/bubble-

sort/analysis/comparison-with-other-

algorithms.html

International Journal Of Educational Research 127 (2024)

PAGE NO : 136

