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Abstract— This study investigated the optimization of convolutional neural network (CNN) models for the efficient 
identification of leaf diseases in nightshade crops, focusing on tomatoes, potatoes, bell peppers, and eggplants.  Through a 
comprehensive analysis of time and space complexity, various CNN architectures, including AlexNet, VGG, GoogleNet, and 
custom Nightshade-CNN https://doi.org/10.1007/978-981-99-1431-9_2, https://ijisae.org/index.php/IJISAE/article/view/2461 
and Enhanced Nightshade-CNN https://doi.org/10.1007/s00371-023-03127-y models, were evaluated.  This study used a large 
dataset of nightshade leaf images with bacterial, viral, and fungal diseases.  Theoretical and empirical analyses consider factors 
such as the image size, filter size, layer count, and model parameters.  Our findings reveal that deeper models, such as VGG 
and GoogleNet, exhibit higher computational requirements than leaner alternatives.  By applying optimization techniques, the 
performance of CNNs can be enhanced, demonstrating the need to balance model complexity with efficiency.  The Nightshade-
CNN and Enhanced Nightshade-CNN models, with their reduced layer counts and filter sizes, show promise for achieving 
efficient and accurate disease identification.  This study offers insights into the design of effective and interpretable CNN 
models for plant disease analysis, ultimately supporting improved crop management and agriculture.  
 
Keywords—Space and Time complexity Parameters, Nightshade-CNN and Enhanced Nightshade-CNN space and time 
complexity 

 
1. INTRODUCTION 
 
In modern agriculture, early and accurate detection of plant 
diseases is important to obtain healthy crops and increase 
crop yield. Nightshade plants, such as tomatoes, potatoes, 
peppers, and eggplants, are particularly susceptible to many 
diseases, including blight, early blight, and powdery 
mildew[8]. Traditional disease identification methods use 
manual examinations, which are time-consuming, labor-
intensive, and error-prone. This has encouraged the 
development of artificial intelligence technology that uses 
the power of convolutional neural networks (CNN) to 
improve the accuracy and efficiency of disease diagnosis. 
This material is well known for its rod-like characteristics 
and can be used extensively in plant pathology research. 
Because CNN can extract hierarchical features from 
images, they can easily differentiate between normal and 
diseased tissues. Nevertheless, the application of CNN-
based models to real farms requires a good computational 
understanding. In particular, the temporal and spatial 
complexity of these models relates to practical 
requirements, such as computation time, amount of 
memory used, and efficiency of the model. Owing to the 
temporal and spatial characteristics of the CNN, diseases 
on the leaves of eggplants were detected. In addition to 
conventional models such as AlexNet, VGG, and 

GoogleNet, research has been conducted to develop 
specific models such as Nightshade-CNN[1-3] and 
Enhanced Nightshade-CNN[4]. Based on the theoretical 
view and actual experience with the given model, it is 
possible to outline the economic conditions for making a 
correct diagnosis. The need for disease analysis is to 
evaluate and compare their performance and productivity 
based on actual data in order to find ways to minimize the 
number of inclusions with at least the same level of 
efficiency. 
 
This comprehensive review aims to provide researchers 
and practitioners with practical knowledge regarding the 
use of CNN-based models in agriculture, ultimately 
promoting sustainable and profitable agriculture.  The 
remainder of this paper is organized as follows. Section 2 
covers related work. Section 3 describes the methodology 
and results, and Section 5 concludes the study. Figure 1 
displays the flow of the study in a graphical representation. 
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Figure 1 Paper Flow Diagram 
 
2. LITERATURE SURVEY 
 
The use of convolutional neural networks (CNNs) for plant 
disease identification has advanced significantly, 
particularly for nightshade crops such as tomatoes, 
potatoes, and peppers. CNNs, with their robust image 
recognition capabilities, are well suited for detecting and 
classifying plant diseases based on leaf images. However, 
the deployment of CNNs in real-world agricultural 
applications requires an understanding of their time and 
space complexities. 
 
Early studies[1] by Krizhevsky et al. introduced AlexNet, 
a deep CNN architecture that achieves groundbreaking 
results in image classification. The AlexNet model with 
five convolutional layers and three fully connected layers 
proved that deep learning could work, but at the same time, 
it showed how computationally intensive such models were 
for training and using them. In the same year, Simonyan 
and Zisserman [2] developed the VGGNet, which extended 
the CNN architectures in the use of 16-19 layers with 3 × 3 
small filters. Although there is an increase in the accuracy 
of VGGNet, the same factor has been proven to increase 
the computational and memory requirements; hence, its 
applicability in agriculture is limited. The time complexity 
of a CNN is dependent on the number of layers, size of the 
filters, and size of the input image. For instance, the 
AlexNet architecture, although very effective, is 
computationally intensive owing to its large number of 
parameters and operations. Nevertheless, VGGNet 
aggravates this issue because of its deeper architecture, 
which results in a higher computational complexity.  
  
 GoogleNet[3] introduced initial modules that enabled the 
network to go deeper without a corresponding increase in 
the computational complexity. However, the time 
complexity of deeper models is still an issue with real-time 
applications, as such innovations are still in progress. The 
spatial complexity of a CNN is defined as the memory 
required to store the model parameters and temporary 
feature maps. AlexNet, for example, and VGGNet with 
millions of parameters consume large amounts of memory. 
For instance, VGG-16 has approximately 138 million 

parameters, which are quite large and consume a large 
amount of storage space and computational power.  
  
Han et al.. proposed deep compression with methods of 
pruning, quantization, and Huffman coding to decrease the 
model size and enhance the efficiency at the same rate. 
These techniques are essential for the execution of CNNs 
within devices that have a small amount of memory and 
processing power [4]. 
 
Some of the models that have been established are specific 
to detecting diseases in eggplant crops, and in doing this, it 
is done in a way that takes less time while at the same time 
being effective. Deep learning researchers Mohanty et al. 
utilized a large set of data for training a CNN with 
improved classification success in different plant diseases, 
including diseases that affect eggplant crops. Their study 
made them realize the need to have large and diverse 

datasets but also pointed out the increased 
computational needs of large training [5].  
  
The newly proposed Nightshade-CNN and the Improved 
Nightshade-CNN were designed to achieve better 
performance with less time and space consumption. These 
models often employ fewer layers, and the filter size is 
chosen such that it provides better performance with 
reduced computational complexity.  
  
Several optimization techniques [6] have been reviewed to 
improve the ability of CNNs in plant disease diagnosis. 
Some of the main strategies include the use of the learning 
rate, mini-batch size, and epoch, which enhances the 
efficiency of the model. Transfer learning, in which models 
are fine-tuned for specific tasks, has also been used to save 
time and computational power. 
 
Advances in hardware accelerators, such as GPUs and 
TPUs, have greatly improved the feasibility of deploying 
deep learning models in agricultural settings. These 
accelerators enable faster computations and efficient 
memory usage, thereby facilitating real-time disease 
detection and classification [7]. 
 
The proposed Nightshade-CNN[9] model achieves 93-95% 
accuracy in training and testing, accurately identifying 
healthy and unhealthy leaves of nightshade crops, 
classifying unhealthy diseases, and suggesting treatment. It 
generates fewer parameters and requires less computational 
power and resources than other standard models such as 
AlexNet, VGG, and GoogLeNet. 
 
Crop diseases pose a significant threat to food safety; 
however, their rapid diagnosis remains challenging. Deep-
learning models have shown better performance than 
traditional machine-learning techniques in various fields, 
including agronomy. This research proposes a model[10] 
to identify plant leaf diseases with greater accuracy and 
efficiency than existing approaches. The model, trained on 
night-shed plants, has nine categorical classes of diseases 
and healthy leaves. The model achieved a disease 
classification accuracy rate of 93–95%, indicating its 
potential to significantly improve the speed and accuracy 
of identification of disease-infected leaves. 
 

Introduction 
and Literature 

Survey 

Method  

Complexity 
Calculation 

Conclusion 
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Early detection of plant diseases is crucial for crop health 
and successful harvest. Advancements in computer vision 
technology have improved methods, but traditional deep 
learning algorithms have drawbacks. This research article 
raises awareness about the Enhance-Nightshade-CNN [11] 
model, which improves nightshade crop leaf disease 
detection, achieving 95-100% accuracy. 
 
The paper[13] provides an extensive overview of deep-
learning-based blind motion deblurring, focusing on the 
role of deep learning in this field. It introduces different 
types of motion blur and highlights the shortcomings of 
traditional nonblind deblurring algorithms. This study 
categorizes existing methods based on different backbone 
networks, including convolutional neural networks, 
generative adversarial networks, recurrent neural networks, 
and transformer networks. It also discusses the advantages 
and limitations of these methods, compares their 
performance on four widely used datasets, and analyzes 
current challenges and prospects to drive innovation in 
image deblurring research. 
 
Time complexity represents [18] the amount of 
computational resources required for a model to handle 
input data and generate output predictions, which are 
typically quantified by the number of mathematical 
operations involved. In the case of CNNs, time complexity 
can differ depending on factors like the depth of the 
network, input data size, and the intricacy of operations 
within each layer. Deeper CNNs with more layers and 
larger filters generally have a higher time complexity 
because they require more operations for convolution, 
pooling, and activation processes. 
 
It is essential to carefully manage the model complexity in 
deep learning to ensure effectiveness. If a model is too 
complex, it may fit the training data exactly, but struggle to 
perform well on new, unseen data, a problem known as 
overfitting. Conversely, if a model is too simple, it may fail 
to capture the key patterns in the data, leading to 
underfitting. To build models that generalize well and 
perform effectively in real-world applications, a balance 
must be established through thoughtful design, 
experimentation, and the use of regularization 
techniques[19]. 
 
Neural network architectures[20] typically consist of key 
elements such as convolutional, fully connected, and 
pooling layers. A critical aspect of evaluating a model's 
complexity and computational demands is understanding 
the number of "learnable" parameters in each layer. 
 
The study [21] explored methods to reduce the computation 
requirements of neural networks and make them suitable 
for mobile devices. It reviews various techniques, including 
deep compression, which involves network pruning, 
quantization, and encoding of network weights. The 
technique reduces the training time by pruning irrelevant 
connections, quantizing weights, and using the Huffman 
encoding algorithm to address storage issues. This 
approach can potentially improve the performance of 
neural networks in mobile devices. 
 

The authors of [22] examined the time complexity of two 
algorithms, KNN and CNN, for character recognition. 
KNN uses the Euclidean distance between the input 
images, whereas CNN uses Convolutional Neural 
Networks (CNN) on Keras and TensorFlow. The first layer 
of the neural network used 784 neurons, with each neuron 
generating a 0-9 output. The KNN classifier presented the 
results, whereas the CNN outperformed the KNN in terms 
of accuracy. 
 
In [23] a novel graph-based frequency channel selection 
method was proposed to improve the speed of 
Convolutional Neural Networks (CNNs) in the compressed 
domain. This method reduces the computational 
complexity by retaining important frequency components 
and eliminating unnecessary layers. The experimental 
results show that the modified ResNet-50 is 70% faster than 
the traditional ResNet-50 with a similar classification 
accuracy. The proposed preprocessing step with partial 
encoding improves the image distortion resilience. 
 
The Author[24] proposed an algorithm that combines the 
Winograd minimal filtering and Strassen algorithms to 
reduce the computational complexity in convolutional 
neural networks. The algorithm saves 75% of the runtime 
compared with conventional algorithms, demonstrating its 
potential for optimal performance. 
 
The model-based comparison chart from the literature 
survey is presented in  Table 1.  
 

Table 1 Model Comparison Chart 
Model Num

ber 

Of 

Conv

olutio

n 

Layer

s 

Number 

of Filters 

Poolin

g Size 

Filter 

Size 

FC 

AlexNe

t 

5 [96,256] [3x3] [11x1

1,3x3

] 

3 

VGG 16 [64,128,2

56,512] 

[2x2] [3x3] 3 

Google

Net 

22 Varies [3x3,5

x5] 

[5x5,

3x3,1

x1] 

1 

 
Findings from extensive research into the performance of 
CNN models revealed the following insights. 

Research finding: 

 Deeper architectures such as VGG and GoogleNet 
require higher computational times and more 
memory space than other shallow models such as 
AlexNet. 

 If the model generates fewer parameters, it 
requires less computation time and storage space. 

 If increasing size of datasets and models, 
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scalability becomes a critical factor. 
 Decreasing the number of neurons in the Fully 

Connected layer can help reduce both time and 
space complexity. 

 Less of an FC layer can help to reduce the time 
and space complexity. 

  
3.  DATASET 
 
This study introduces an economical model designed to 
identify leaf diseases in preprocessed nightshade crop 
leaves, including tomatoes, potatoes, bell peppers, and 
eggplants. The model demonstrated proficiency in 
detecting diseases caused by fungi, bacteria, and viruses in 
both plain and complex backgrounds.  Nightshade crops, 
which belong to the Solanaceae family, are vital for their 
economic, medicinal, and culinary benefits. Potatoes 
provide significant caloric intake, whereas tomatoes, 
eggplants, and peppers enhance culinary diversity and 

nutrition, reinforcing global food security. This study 
focuses on nightshade crop leaves using RGB image 
datasets from the Plant Village repository, which offers 
extensive images of diseased and healthy plants for 
machine learning model development. Specifically, the 
research focused on tomato, potato, bell pepper, and 
eggplant leaves, leveraging a dataset [12] of 25,605 images 
to aid in early disease detection and classification, 
ultimately supporting effective disease management and 
crop yield improvement. These images are used for the 
diagnostic testing of leaf diseases, particularly focusing on 
abnormalities. All photographs were taken in sunlight 
before 5:00 p.m., and the data included 18 groups of 
diseased and healthy leaves. All images collected had a 
plain background. 
 
Figure 2 displays the images of healthy and infected 
nightshade crop leaves on a plain background.

. 

 
Figure 2 healthy and infected nightshade crop leaf images 

 
Preprocessing is essential as it ensures that the data are in 
an appropriate form for examination, reduces noise and 
inconsistencies, and helps machine learning models 
perform effectively and accurately[8]. Proper 
preprocessing can improve the quality of the input data, 
leading to more efficient and effective image classification. 
While CNNs are powerful in automatically learning 
features, preprocessing can help optimize the input data for 
better model performance. Pre-processing techniques, such 
as rescaling, image resizing, data augmentation, padding, 
normalization, noise reduction, and handling imbalanced 
data, have been applied to nightshade crop leaves to 
improve their quality. 

 
4.  METHOD AND RESULT 

Factors such as layers, layer operations, filter size, input 
size, model architecture, hardware acceleration, 
optimization techniques, and batch size [3] are important 
for determining the complexity of CNN models.  This study 
examined several parameters that influence the time and 
space complexity of convolutional neural network (CNN) 
models, particularly for nightshade crop leaf disease 
identification.  

Parameters for Complexity: 

Key factors include the number of parameters, number of 
layers, interactions within layers, and activation functions: 
control techniques, architectural choices, input layer, 
pooling layer, convolutional layer, and fully connected 
layer. Together, these parameters determine the 
computational complexity and effectiveness of the CNN 
models used in agricultural technology. 

 Number of Parameters: The total number of weights 
or parameters in the network affects the model 
complexity. Although more parameters increase the 
flexibility of the model, if they are not properly 
regulated, overfitting may occur. 

 Number of Layers: An important component of 
complexity is the depth of the neural network, which is 
based on the number of hidden layers. Although they 
must be carefully trained and regularized, deeper 
networks can learn more complex representations. 

 Interaction among Layers: The quantity and interplay 
of neurons or units in every layer are other factors that 
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contribute to complexity. Complex relationships in the 
data can be captured using a larger number of neurons. 

 Activation Function: Model complexity may be 
affected by the selection of activation functions. By 
introducing nonlinearity, functions such as ReLU 
enable the model to learn intricate mapping. 

 Regularization Techniques: Model complexity can be 
controlled, and overfitting can be avoided by utilizing 
techniques such as batch normalization, L1/L2 
regularization, and dropout. 

 Architectural Choices: The use of convolutional 
layers in CNNs for image processing or recurrent layers 
in recurrent neural networks (RNNs) for sequential data 
are examples of architectural decisions that affect 
model complexity. 

 Input Layer: There learnable parameters in the input 
layer. Its purpose is to receive and transfer the input data 
to the next tier in the required format. 

 Pooling Layer: The utilization of pooling layers lowers 
the total number of parameters in the model as well as 
its computational complexity. They also aid in 
preventing overfitting by reducing the sample size of 
input data. 

 Convolution Layer: Convolution layers process input 
data using learnable filters called kernels. The number 
of filters, filter size, and other criteria determine the 
number of parameters in the convolutional layer. The 
convolution layers shrink the size of the image without 
sacrificing a significant pixel-to-pixel correspondence. 

 Fully Connected Layer: All parameters of the fully 
connected layer are linked to each other. This layer is 
crucial for determining intricate connections and effects 
between variables, especially when dealing with 
classification-type tasks. In the fully linked layer, the 
number of parameters is directly proportional to the 
total number of neurons. 

Time Complexity: 

In a CNN, the time complexity is the number of operations 
used to analyze the input data to produce output 
predictions. Thus, the time complexity depends on the 
number of layers, size of inputs, and complexity of 
operations in layers. More layers in a CNN and larger filter 
sizes in the network show that the time complexity 
increases with deeper CNNs owing to the increased 
operations in the convolution pooling and activation 
functions. This is where improvements in hardware, 
including GPUs and different optimization techniques, are 
of assistance. The degree of complexity has to be just right 
to prevent over- or under-fitting, and to allow the model to 
generalize to actual tasks. 

With regard to the above, the time complexity of the CNN 
model can be determined using the following factors; 
height of the input image (I_height), width of the input 
image (I_width), filter height (F_height), filter width 
(F_width) and the number of input channel (ch_in), number 
of output channel (ch_out), step operation, and offset. 
parameters. 

The time complexity of a convolutional operation in a 
neural network is given by eq. 1 

Time complexity = (I_width × I_height × F_width × 
F_height × C_in) × C_out )                                               1 

The time complexity of the CNN model depends on the 
number of parameters in the layers, such as the input, 
pooling, and fully connected layers. 

The input image is fed into the convolution layer, giving 
rise to the general eq. for the complexity of the convolution 
layer, denoted as: 

                        O ( �� ∗ �� ∗ ��� ∗ ����)                  2                                                                     

where N represents the image size (N × N), Si is the filter 
size, Cin is the input channel, and Cout is the output 
channel.  

The complexity of a pooling layer in a neural network 
depends primarily on the size of the pooling window 
(kernel) and the stride used for pooling. The pooling 
operation samples input feature maps by reducing their 
spatial dimensions. where Nin = height or width of the 
input feature map, S = width or height of the pooling layer, 
and Cin= number of input channels. The complexity of a 
pooling layer can be expressed in terms of the number of 
operations required to perform the pooling operations. For 
each pooling window, a single operation was typically 
performed to compute the maximum value within the 
window. Therefore, the overall complexity of the pooling 
layer can be denoted by eq.3 

                                  O (
  ���

�
∗

���

�
∗ ��� )                  3                                        

The complexity of a fully connected layer in a neural 
network depends on the number of neurons in the layer and 
size of the input feature vector. Nin = dimensionality of the 
input feature vector and Nout = number of neurons in the 
fully connected layer. The complexity of a fully connected 
layer can be expressed as the number of operations required 
to compute the output of that layer. For each neuron in the 
fully connected layer, a dot product operation was 
performed between the input feature vector and the weights 
of the neuron, followed by the addition of the bias term and 
an activation function. Therefore, the overall complexity of 
a fully connected layer can be expressed as  

      O ( Nin * Nout )                                                     4                                                                                   

The time complexity of the proposed model was calculated 
using eq. 2,3,4 and other parameters, such as filter size, no 
filters, stride, and padding. For the proposed model, the 
filter sizes were 11 × 11, 3 × 3, and 1 × 1. The numbers of 
filters is 32,64,128,256,512. The same padding and 
different stride values 4x4,2x2 and 1x1 have were 
taken[13]. Considering all these parameters of the proposed 
model, the total summary of eq 2, 3, and 4 is given by eq..5 

O ( �� ∗ �� ∗ ��� ∗ ����)    +   O (
  ���

�
∗

���

�
∗ ��� )    

+    O ( Nin * Nout )                               5               
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To prove this practically, experiments were performed with 
different CNN models to examine 2 and 4 and the overall 
time required for the model according to eq 5. 

The analysis focuses on the time complexity of CNN 
models, exploring how it varies with parameters such as the 
number of convolutions and fully connected layers, pooling 
size, filter size, number of filters, stride, and padding. A 
standardized image size of 227 × 227 pixels was utilized 

across the CNN models. Leaky ReLU activation functions 
are employed in all layers except the output layer, where 
Softmax activation is used. A batch size of 32, learning rate 
of 0.0001 with the Adam optimizer, and the same padding 
were employed[14]. Different CNN models were selected 
based on variations in these parameters. The model setup 
parameters, detailed in Table 2, are defined by eq. 2 and 4: 

 
Table 2 CNN model setup Parameters 

Model 

Number Of 

Convolution 

Layers 

Number of Filters Pooling Size Filter Size FC 

CNN-1 4 32,64 [2x2, 1x1] [5x5, 5x5] 1 

CNN-2 4 [32, 64, 128] [2x2, 1x1] [11x11] 1 

CNN-3 5 [32, 64, 128, 256] [2x2, 1x1] [11x11, 3x3] 2 

CNN-4 5 [32, 64, 128, 256, 

512] 

[2x2, 1x1] [11x11, 3x3, 1x1] 3 

AlexNet 5 [96,256] [3x3] [11x11,3x3] 3 

VGG 16 [64,128,256,512] [2x2] [3x3] 3 

GoogleNet 22 Varies [3x3,5x5] [5x5,3x3,1x1] 1 

Nightshade-CNN 

5 
[32, 64, 128, 256, 

512] 
[2x2, 1x1] [11x11, 3x3, 1x1] 1 Enhanced Nightshade-

CNN 

The time complexity of the CNN models was evaluated 
using Google Colab with NVIDIA GPUs (TESLA T4 and 
A100), by analyzing various CNN parameters and 

execution epochs for nightshade crop leaf datasets, as 
shown in Table 3.

Table 3 CNN parameters and execution epochs for nightshade crop leaf datasets 

Model 
Number Of 
Convolution 

Layers 
FC Filter Size 

 
Epochs 

(Times in 
Hrs.) 

CNN-1 4 1 [5x5, 5x5] 2.5 

CNN-2 4 1 [11x11] 4.5 

CNN-3 5 2 [11x11, 3x3] 5.5 

CNN-4 5 3 [11x11, 3x3, 1x1] 9 

AlexNet 5 3 [11x11,3x3] 8 

VGG 16 3 [3x3] 26 

GoogleNet 22 1 [5x5,3x3,1x1] 48 

Nightshade-CNN[9-10] 5 1 [11x11, 3x3, 1x1] 4 

Enhanced Nightshade-CNN[11] 5 1 [11x11, 3x3, 1x1] 6 

 
Table 3 compares various neural network models based on 
the number of convolution layers, fully connected (FC) 
layers, filter sizes, and training time (epochs in hours). The 
following is a brief explanation. 

 CNN-1:4 convolution layers, 1 FC layer, filter 
sizes of 5x5, with training times increasing from 
0.5 to 2.5 hours over 100 to 500 epochs. 

 CNN-2: Similar to CNN-1, but with an 11 × 11 
filter, and its training time increases from 0.5 to 
4.5 hours. 

 CNN-3:5 convolution layers, 2 FC layers, using 
filters of 11 × 11 and 3 × 3, with longer training 
times (up to 5.5 hours). 

 CNN-4:5 convolution layers, 3 FC layers, with 
filters 11 × 11, 3 × 3, and 1 × 1, the training time 
increased significantly to 9 h at 500 epochs. 

 AlexNet: five convolution layers, three FC layers, 
and filters similar to CNN-4, requiring up to 8 h. 

 VGG: 16 convolution layers, three FC layers, 
with 3 × 3 filters, requiring much more training 
time (up to 26 h). 

 
 GoogleNet: 22 convolution layers, one FC layer, 

using various filters, and required the longest 
training time (up to 48 h). 
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 Nightshade-CNN: five convolution layers, one 
FC layer, with filters similar to CNN-4, and 
training for up to 4 h. 

 Enhanced Nightshade-CNN: Same architecture 
as Nightshade-CNN, but with a slightly longer 
training time of up to 6 h. 

 
Space Complexity 
 
Parameters, intermediate activations, and other data models 
during training and inference. In CNNs, location 
complexity depends on conditions such as the number of 
parameters in the model, its size, and the size of the average 
maps created by each layer[15-17]. or the densely 
connected layers are more complex. Additionally, large 
batch sizes can increase the memory requirements during 
training. Managing the complexity of a site is especially 
important in areas where resources are limited, such as edge 
devices or mobile applications. This can help protect deep 
learning models while making them efficient. In the context 
of CNNs, the required resources, including time and 
memory (space) complexity, are issues of concern. To 
solve these problems, the Nightshade-CNN [9,10] and 
Enhance-Nightshade-CNN[11] models use special filters 

(11 × 11, 3 × 3, and 1 × 1) with a total of six layers. This 
method helps reduce the number of inconsistencies and, 
hence, the complexity of the site. 
The space complexity of the model depends on the weight, 
which is determined by the number of input channels (c), 
weight (w), height (h), and the number of output channels 
(k), with 'k' representing the bias. 
 
Each filter in an instance of a convolutional layer has a set 
of parameters, which are trainable parameters that arrive at 
by taking the product of the number of input channels (c), 
width (w), and height (h) of the filter and the number of 
filters (k), thus cwhk. These parameters are learned during 
training to obtain relevant features from the input data. Bias 
terms are extra variables incorporated into a neural network 
layer to enhance the model’s ability to fit the training data. 
Every filter has a bias term that provides k bias parameters 
in total. 
 
By adding the weights and bias terms, the total number of 
parameters |W| in the convolutional layer was calculated 
using eq. 6 
|W| = cwhk + k 
      =(cwh+1)k                                                                  6                                                                                                        

 

 
Figure 3 Space Complexity of Nightshade Crop Leaf 

Figure 3 shows that the nightshade crop leaf image size 
was c × A × D                                                                           

7. 
 
                 Where A= width 
                             D = height  
                             c = channel or feature map. 
 
The weights were downloaded and stored in memory, and 
the required space was considered. The model has an input 
image with dimensions AxD and convolves it with a kernel 
of size c × w × h.  
 
The number of parameters associated with each neuron in 
the fully connected (FC) layer is determined by the spatial 
dimensions (width and height) of the input image or feature 
map and the dimensions of the hidden layer. The effective 
width of the receptive field of the hidden layer was (A-
w+1), and the effective height was (D-h+1). By multiplying 
these two terms, we obtained the total number of 
parameters per neuron. Each neuron in the FC layer has a 
weight parameter for each connection from the input 

features along with its associated bias parameter. 
Therefore, the total number of parameters for the weights 
and biases was 2k.  
Multiplying the number of parameters per neuron by the 
total number of neurons (k) yields the total number of 
parameters in the fully connected layer:. 
 
Hence  
resultant kernel = 2k(A-w+1) (D-h+1)                            8                                                                                                                             

                   where A image width,  
                              D=image height,  
                              w=hidden layer width, 
                               h= hidden layer height, and  
                               k=bias in no of kernels. 
 
Therefore, the total required space for the model is equal to 
the addition of eq. 6,7 and 8. 
Hence, 
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Total Space requirement = cAD + k(cwh+1) + 2k(A-w+1) 

(D-h+1)                                                                          9 
 
The spatial complexity of a convolutional neural network 
(CNN) model depends on various factors, including the 
size of the input image, the total number of weights, and the 
dimensions of the hidden layer feature maps. Therefore, 
space complexity, denoted as (cAD + k(cwh+1) + 2k(A-
w+1) (D-h+1), provides an estimate of the amount of 
memory required for these models.      
 The spatial complexity analysis of CNN models includes 
various parameters, such as convolution and fully 

connected layers, batch size, filter size, and regularization 
techniques. Based on these variations, models trained on 
227 × 227 images with a dropout of 0.5 and a batch size of 
32 were chosen. Memory requirements were calculated 
using eq. 9, with detailed results shown in Table 3, whereas 
the implementation used NVIDIA Tesla T4 and A100 
Tensor GPUs. 
 
 
 
 
 
 
 

 
Table 4 highlights the correlation between model size and storage space. 

Model 

Numbe
r Of 

Convol
ution 

Layers 

FC GPU Type 
Memory 

Requirement 
Processor 

AlexNet 5 3 Tesla T4 16GB NVIDIA Tesla T4 

VGG 16 3 
A100 
Tensor 

40 GB 
NVIDIA A100 
Tensor Core 

GoogleNet 22 1 
A100 
Tensor 

40 GB 
NVIDIA A100 
Tensor Core 

Nightshade-CNN[8-10] 5 1 Tesla T4 
16GB NVIDIA Tesla T4 Enhanced Nightshade-

CNN[11] 
5 1 Tesla T4 

 
Table 4 highlights the correlation between the model size 
and storage space, with larger models such as VGG and 
GoogleNet requiring more storage space because of their 
extensive layering. By contrast, Nightshade-CNN and 
Enhanced Nightshade-CNN use Google infrastructure with 
Tesla T4 GPUs in an NVIDIA environment. The storage 
needs are affected by the size of the model and the 
dimensions of the input image, including the height and 
width. 
From Table 3, the following points have been concluded: 
 The classic AlexNet model is known for its 

pioneering role in deep learning with moderate 
computational requirements. 

 The deeper VGG model requires more computational 
resources, particularly for handling larger datasets. 

 GoogleNet focuses on reducing the number of 
parameters through its inception modules, making it 
more efficient, despite having more layers. 

 NightShade-CNN appears to be a more lightweight 
model with fewer layers and lower memory 
requirements. 

 The Enhanced Nightshade-CNN requires an 
additional preprocessing step; however, the final 
storage requirement remains the same as that of the 
Nightshade-CNN. 
 

 
5. CONCLUSION 
 
The time complexity of a model is greatly influenced by 
factors such as the number of layers, filters, and filter size, 
whereas the space complexity is largely determined by the 
size of the model. Models characterized by fewer layers and 
smaller batch sizes generally exhibit lower space 
complexity. Thus, meticulous design considerations are 

vital for enhancing both the time complexity O ( �� ∗

�� ∗ ��� ∗ ����)    +   O (
  ���

�
∗

���

�
∗ ��� )    +    O ( 

Nin * Nout ) and the space complexity (cAD + k(cwh+1) 
+ 2k(A-w+1) (D-h+1)) in the Nightshade-CNN and 
Enhanced Nightshade-CNN models. 
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