
Efficient Nightshade Crop Leaf Disease
Identification: An Optimized CNN Approach with

Comprehensive Time and Space Complexity
Analysis

*Barkha Joshi, Dr. Hetal Bhavsar

Computer Engineering Dept.
Sardar Vallabhbhai Patel Institute of Technology.Vasad,Gujarat,Anand, India.

Computer Science and Engineering Dept.
The Maharaja Sayajirao University of Baroda.Vadodara,Gujarat,Vadodara, India

*barkhajoshi.comp@svitvasad.ac.in, barkha_ce@yahoo.co.in

hetal.bhavsar-cse@msubaroda.ac.in

Abstract— This study investigated the optimization of convolutional neural network (CNN) models for the efficient
identification of leaf diseases in nightshade crops, focusing on tomatoes, potatoes, bell peppers, and eggplants. Through a
comprehensive analysis of time and space complexity, various CNN architectures, including AlexNet, VGG, GoogleNet, and
custom Nightshade-CNN https://doi.org/10.1007/978-981-99-1431-9_2, https://ijisae.org/index.php/IJISAE/article/view/2461
and Enhanced Nightshade-CNN https://doi.org/10.1007/s00371-023-03127-y models, were evaluated. This study used a large
dataset of nightshade leaf images with bacterial, viral, and fungal diseases. Theoretical and empirical analyses consider factors
such as the image size, filter size, layer count, and model parameters. Our findings reveal that deeper models, such as VGG
and GoogleNet, exhibit higher computational requirements than leaner alternatives. By applying optimization techniques, the
performance of CNNs can be enhanced, demonstrating the need to balance model complexity with efficiency. The Nightshade-
CNN and Enhanced Nightshade-CNN models, with their reduced layer counts and filter sizes, show promise for achieving
efficient and accurate disease identification. This study offers insights into the design of effective and interpretable CNN
models for plant disease analysis, ultimately supporting improved crop management and agriculture.

Keywords—Space and Time complexity Parameters, Nightshade-CNN and Enhanced Nightshade-CNN space and time
complexity

1. INTRODUCTION

In modern agriculture, early and accurate detection of plant
diseases is important to obtain healthy crops and increase
crop yield. Nightshade plants, such as tomatoes, potatoes,
peppers, and eggplants, are particularly susceptible to many
diseases, including blight, early blight, and powdery
mildew[8]. Traditional disease identification methods use
manual examinations, which are time-consuming, labor-
intensive, and error-prone. This has encouraged the
development of artificial intelligence technology that uses
the power of convolutional neural networks (CNN) to
improve the accuracy and efficiency of disease diagnosis.
This material is well known for its rod-like characteristics
and can be used extensively in plant pathology research.
Because CNN can extract hierarchical features from
images, they can easily differentiate between normal and
diseased tissues. Nevertheless, the application of CNN-
based models to real farms requires a good computational
understanding. In particular, the temporal and spatial
complexity of these models relates to practical
requirements, such as computation time, amount of
memory used, and efficiency of the model. Owing to the
temporal and spatial characteristics of the CNN, diseases
on the leaves of eggplants were detected. In addition to
conventional models such as AlexNet, VGG, and

GoogleNet, research has been conducted to develop
specific models such as Nightshade-CNN[1-3] and
Enhanced Nightshade-CNN[4]. Based on the theoretical
view and actual experience with the given model, it is
possible to outline the economic conditions for making a
correct diagnosis. The need for disease analysis is to
evaluate and compare their performance and productivity
based on actual data in order to find ways to minimize the
number of inclusions with at least the same level of
efficiency.

This comprehensive review aims to provide researchers
and practitioners with practical knowledge regarding the
use of CNN-based models in agriculture, ultimately
promoting sustainable and profitable agriculture. The
remainder of this paper is organized as follows. Section 2
covers related work. Section 3 describes the methodology
and results, and Section 5 concludes the study. Figure 1
displays the flow of the study in a graphical representation.

 Abstract

International Journal Of Educational Research 128 (2025)

Page No : 143

Figure 1 Paper Flow Diagram

2. LITERATURE SURVEY

The use of convolutional neural networks (CNNs) for plant
disease identification has advanced significantly,
particularly for nightshade crops such as tomatoes,
potatoes, and peppers. CNNs, with their robust image
recognition capabilities, are well suited for detecting and
classifying plant diseases based on leaf images. However,
the deployment of CNNs in real-world agricultural
applications requires an understanding of their time and
space complexities.

Early studies[1] by Krizhevsky et al. introduced AlexNet,
a deep CNN architecture that achieves groundbreaking
results in image classification. The AlexNet model with
five convolutional layers and three fully connected layers
proved that deep learning could work, but at the same time,
it showed how computationally intensive such models were
for training and using them. In the same year, Simonyan
and Zisserman [2] developed the VGGNet, which extended
the CNN architectures in the use of 16-19 layers with 3 × 3
small filters. Although there is an increase in the accuracy
of VGGNet, the same factor has been proven to increase
the computational and memory requirements; hence, its
applicability in agriculture is limited. The time complexity
of a CNN is dependent on the number of layers, size of the
filters, and size of the input image. For instance, the
AlexNet architecture, although very effective, is
computationally intensive owing to its large number of
parameters and operations. Nevertheless, VGGNet
aggravates this issue because of its deeper architecture,
which results in a higher computational complexity.

 GoogleNet[3] introduced initial modules that enabled the
network to go deeper without a corresponding increase in
the computational complexity. However, the time
complexity of deeper models is still an issue with real-time
applications, as such innovations are still in progress. The
spatial complexity of a CNN is defined as the memory
required to store the model parameters and temporary
feature maps. AlexNet, for example, and VGGNet with
millions of parameters consume large amounts of memory.
For instance, VGG-16 has approximately 138 million

parameters, which are quite large and consume a large
amount of storage space and computational power.

Han et al.. proposed deep compression with methods of
pruning, quantization, and Huffman coding to decrease the
model size and enhance the efficiency at the same rate.
These techniques are essential for the execution of CNNs
within devices that have a small amount of memory and
processing power [4].

Some of the models that have been established are specific
to detecting diseases in eggplant crops, and in doing this, it
is done in a way that takes less time while at the same time
being effective. Deep learning researchers Mohanty et al.
utilized a large set of data for training a CNN with
improved classification success in different plant diseases,
including diseases that affect eggplant crops. Their study
made them realize the need to have large and diverse

datasets but also pointed out the increased
computational needs of large training [5].

The newly proposed Nightshade-CNN and the Improved
Nightshade-CNN were designed to achieve better
performance with less time and space consumption. These
models often employ fewer layers, and the filter size is
chosen such that it provides better performance with
reduced computational complexity.

Several optimization techniques [6] have been reviewed to
improve the ability of CNNs in plant disease diagnosis.
Some of the main strategies include the use of the learning
rate, mini-batch size, and epoch, which enhances the
efficiency of the model. Transfer learning, in which models
are fine-tuned for specific tasks, has also been used to save
time and computational power.

Advances in hardware accelerators, such as GPUs and
TPUs, have greatly improved the feasibility of deploying
deep learning models in agricultural settings. These
accelerators enable faster computations and efficient
memory usage, thereby facilitating real-time disease
detection and classification [7].

The proposed Nightshade-CNN[9] model achieves 93-95%
accuracy in training and testing, accurately identifying
healthy and unhealthy leaves of nightshade crops,
classifying unhealthy diseases, and suggesting treatment. It
generates fewer parameters and requires less computational
power and resources than other standard models such as
AlexNet, VGG, and GoogLeNet.

Crop diseases pose a significant threat to food safety;
however, their rapid diagnosis remains challenging. Deep-
learning models have shown better performance than
traditional machine-learning techniques in various fields,
including agronomy. This research proposes a model[10]
to identify plant leaf diseases with greater accuracy and
efficiency than existing approaches. The model, trained on
night-shed plants, has nine categorical classes of diseases
and healthy leaves. The model achieved a disease
classification accuracy rate of 93–95%, indicating its
potential to significantly improve the speed and accuracy
of identification of disease-infected leaves.

Introduction
and Literature

Survey

Method

Complexity
Calculation

Conclusion

International Journal Of Educational Research 128 (2025)

Page No : 144

Early detection of plant diseases is crucial for crop health
and successful harvest. Advancements in computer vision
technology have improved methods, but traditional deep
learning algorithms have drawbacks. This research article
raises awareness about the Enhance-Nightshade-CNN [11]
model, which improves nightshade crop leaf disease
detection, achieving 95-100% accuracy.

The paper[13] provides an extensive overview of deep-
learning-based blind motion deblurring, focusing on the
role of deep learning in this field. It introduces different
types of motion blur and highlights the shortcomings of
traditional nonblind deblurring algorithms. This study
categorizes existing methods based on different backbone
networks, including convolutional neural networks,
generative adversarial networks, recurrent neural networks,
and transformer networks. It also discusses the advantages
and limitations of these methods, compares their
performance on four widely used datasets, and analyzes
current challenges and prospects to drive innovation in
image deblurring research.

Time complexity represents [18] the amount of
computational resources required for a model to handle
input data and generate output predictions, which are
typically quantified by the number of mathematical
operations involved. In the case of CNNs, time complexity
can differ depending on factors like the depth of the
network, input data size, and the intricacy of operations
within each layer. Deeper CNNs with more layers and
larger filters generally have a higher time complexity
because they require more operations for convolution,
pooling, and activation processes.

It is essential to carefully manage the model complexity in
deep learning to ensure effectiveness. If a model is too
complex, it may fit the training data exactly, but struggle to
perform well on new, unseen data, a problem known as
overfitting. Conversely, if a model is too simple, it may fail
to capture the key patterns in the data, leading to
underfitting. To build models that generalize well and
perform effectively in real-world applications, a balance
must be established through thoughtful design,
experimentation, and the use of regularization
techniques[19].

Neural network architectures[20] typically consist of key
elements such as convolutional, fully connected, and
pooling layers. A critical aspect of evaluating a model's
complexity and computational demands is understanding
the number of "learnable" parameters in each layer.

The study [21] explored methods to reduce the computation
requirements of neural networks and make them suitable
for mobile devices. It reviews various techniques, including
deep compression, which involves network pruning,
quantization, and encoding of network weights. The
technique reduces the training time by pruning irrelevant
connections, quantizing weights, and using the Huffman
encoding algorithm to address storage issues. This
approach can potentially improve the performance of
neural networks in mobile devices.

The authors of [22] examined the time complexity of two
algorithms, KNN and CNN, for character recognition.
KNN uses the Euclidean distance between the input
images, whereas CNN uses Convolutional Neural
Networks (CNN) on Keras and TensorFlow. The first layer
of the neural network used 784 neurons, with each neuron
generating a 0-9 output. The KNN classifier presented the
results, whereas the CNN outperformed the KNN in terms
of accuracy.

In [23] a novel graph-based frequency channel selection
method was proposed to improve the speed of
Convolutional Neural Networks (CNNs) in the compressed
domain. This method reduces the computational
complexity by retaining important frequency components
and eliminating unnecessary layers. The experimental
results show that the modified ResNet-50 is 70% faster than
the traditional ResNet-50 with a similar classification
accuracy. The proposed preprocessing step with partial
encoding improves the image distortion resilience.

The Author[24] proposed an algorithm that combines the
Winograd minimal filtering and Strassen algorithms to
reduce the computational complexity in convolutional
neural networks. The algorithm saves 75% of the runtime
compared with conventional algorithms, demonstrating its
potential for optimal performance.

The model-based comparison chart from the literature
survey is presented in Table 1.

Table 1 Model Comparison Chart
Model Num

ber

Of

Conv

olutio

n

Layer

s

Number

of Filters

Poolin

g Size

Filter

Size

FC

AlexNe

t

5 [96,256] [3x3] [11x1

1,3x3

]

3

VGG 16 [64,128,2

56,512]

[2x2] [3x3] 3

Google

Net

22 Varies [3x3,5

x5]

[5x5,

3x3,1

x1]

1

Findings from extensive research into the performance of
CNN models revealed the following insights.

Research finding:

 Deeper architectures such as VGG and GoogleNet
require higher computational times and more
memory space than other shallow models such as
AlexNet.

 If the model generates fewer parameters, it
requires less computation time and storage space.

 If increasing size of datasets and models,

International Journal Of Educational Research 128 (2025)

Page No : 145

scalability becomes a critical factor.
 Decreasing the number of neurons in the Fully

Connected layer can help reduce both time and
space complexity.

 Less of an FC layer can help to reduce the time
and space complexity.

3. DATASET

This study introduces an economical model designed to
identify leaf diseases in preprocessed nightshade crop
leaves, including tomatoes, potatoes, bell peppers, and
eggplants. The model demonstrated proficiency in
detecting diseases caused by fungi, bacteria, and viruses in
both plain and complex backgrounds. Nightshade crops,
which belong to the Solanaceae family, are vital for their
economic, medicinal, and culinary benefits. Potatoes
provide significant caloric intake, whereas tomatoes,
eggplants, and peppers enhance culinary diversity and

nutrition, reinforcing global food security. This study
focuses on nightshade crop leaves using RGB image
datasets from the Plant Village repository, which offers
extensive images of diseased and healthy plants for
machine learning model development. Specifically, the
research focused on tomato, potato, bell pepper, and
eggplant leaves, leveraging a dataset [12] of 25,605 images
to aid in early disease detection and classification,
ultimately supporting effective disease management and
crop yield improvement. These images are used for the
diagnostic testing of leaf diseases, particularly focusing on
abnormalities. All photographs were taken in sunlight
before 5:00 p.m., and the data included 18 groups of
diseased and healthy leaves. All images collected had a
plain background.

Figure 2 displays the images of healthy and infected
nightshade crop leaves on a plain background.

.

Figure 2 healthy and infected nightshade crop leaf images

Preprocessing is essential as it ensures that the data are in
an appropriate form for examination, reduces noise and
inconsistencies, and helps machine learning models
perform effectively and accurately[8]. Proper
preprocessing can improve the quality of the input data,
leading to more efficient and effective image classification.
While CNNs are powerful in automatically learning
features, preprocessing can help optimize the input data for
better model performance. Pre-processing techniques, such
as rescaling, image resizing, data augmentation, padding,
normalization, noise reduction, and handling imbalanced
data, have been applied to nightshade crop leaves to
improve their quality.

4. METHOD AND RESULT

Factors such as layers, layer operations, filter size, input
size, model architecture, hardware acceleration,
optimization techniques, and batch size [3] are important
for determining the complexity of CNN models. This study
examined several parameters that influence the time and
space complexity of convolutional neural network (CNN)
models, particularly for nightshade crop leaf disease
identification.

Parameters for Complexity:

Key factors include the number of parameters, number of
layers, interactions within layers, and activation functions:
control techniques, architectural choices, input layer,
pooling layer, convolutional layer, and fully connected
layer. Together, these parameters determine the
computational complexity and effectiveness of the CNN
models used in agricultural technology.

 Number of Parameters: The total number of weights
or parameters in the network affects the model
complexity. Although more parameters increase the
flexibility of the model, if they are not properly
regulated, overfitting may occur.

 Number of Layers: An important component of
complexity is the depth of the neural network, which is
based on the number of hidden layers. Although they
must be carefully trained and regularized, deeper
networks can learn more complex representations.

 Interaction among Layers: The quantity and interplay
of neurons or units in every layer are other factors that

International Journal Of Educational Research 128 (2025)

Page No : 146

contribute to complexity. Complex relationships in the
data can be captured using a larger number of neurons.

 Activation Function: Model complexity may be
affected by the selection of activation functions. By
introducing nonlinearity, functions such as ReLU
enable the model to learn intricate mapping.

 Regularization Techniques: Model complexity can be
controlled, and overfitting can be avoided by utilizing
techniques such as batch normalization, L1/L2
regularization, and dropout.

 Architectural Choices: The use of convolutional
layers in CNNs for image processing or recurrent layers
in recurrent neural networks (RNNs) for sequential data
are examples of architectural decisions that affect
model complexity.

 Input Layer: There learnable parameters in the input
layer. Its purpose is to receive and transfer the input data
to the next tier in the required format.

 Pooling Layer: The utilization of pooling layers lowers
the total number of parameters in the model as well as
its computational complexity. They also aid in
preventing overfitting by reducing the sample size of
input data.

 Convolution Layer: Convolution layers process input
data using learnable filters called kernels. The number
of filters, filter size, and other criteria determine the
number of parameters in the convolutional layer. The
convolution layers shrink the size of the image without
sacrificing a significant pixel-to-pixel correspondence.

 Fully Connected Layer: All parameters of the fully
connected layer are linked to each other. This layer is
crucial for determining intricate connections and effects
between variables, especially when dealing with
classification-type tasks. In the fully linked layer, the
number of parameters is directly proportional to the
total number of neurons.

Time Complexity:

In a CNN, the time complexity is the number of operations
used to analyze the input data to produce output
predictions. Thus, the time complexity depends on the
number of layers, size of inputs, and complexity of
operations in layers. More layers in a CNN and larger filter
sizes in the network show that the time complexity
increases with deeper CNNs owing to the increased
operations in the convolution pooling and activation
functions. This is where improvements in hardware,
including GPUs and different optimization techniques, are
of assistance. The degree of complexity has to be just right
to prevent over- or under-fitting, and to allow the model to
generalize to actual tasks.

With regard to the above, the time complexity of the CNN
model can be determined using the following factors;
height of the input image (I_height), width of the input
image (I_width), filter height (F_height), filter width
(F_width) and the number of input channel (ch_in), number
of output channel (ch_out), step operation, and offset.
parameters.

The time complexity of a convolutional operation in a
neural network is given by eq. 1

Time complexity = (I_width × I_height × F_width ×
F_height × C_in) × C_out) 1

The time complexity of the CNN model depends on the
number of parameters in the layers, such as the input,
pooling, and fully connected layers.

The input image is fed into the convolution layer, giving
rise to the general eq. for the complexity of the convolution
layer, denoted as:

 O (�� ∗ �� ∗ ��� ∗ ����) 2

where N represents the image size (N × N), Si is the filter
size, Cin is the input channel, and Cout is the output
channel.

The complexity of a pooling layer in a neural network
depends primarily on the size of the pooling window
(kernel) and the stride used for pooling. The pooling
operation samples input feature maps by reducing their
spatial dimensions. where Nin = height or width of the
input feature map, S = width or height of the pooling layer,
and Cin= number of input channels. The complexity of a
pooling layer can be expressed in terms of the number of
operations required to perform the pooling operations. For
each pooling window, a single operation was typically
performed to compute the maximum value within the
window. Therefore, the overall complexity of the pooling
layer can be denoted by eq.3

 O (
 ���

�
∗

���

�
∗ ���) 3

The complexity of a fully connected layer in a neural
network depends on the number of neurons in the layer and
size of the input feature vector. Nin = dimensionality of the
input feature vector and Nout = number of neurons in the
fully connected layer. The complexity of a fully connected
layer can be expressed as the number of operations required
to compute the output of that layer. For each neuron in the
fully connected layer, a dot product operation was
performed between the input feature vector and the weights
of the neuron, followed by the addition of the bias term and
an activation function. Therefore, the overall complexity of
a fully connected layer can be expressed as

 O (Nin * Nout) 4

The time complexity of the proposed model was calculated
using eq. 2,3,4 and other parameters, such as filter size, no
filters, stride, and padding. For the proposed model, the
filter sizes were 11 × 11, 3 × 3, and 1 × 1. The numbers of
filters is 32,64,128,256,512. The same padding and
different stride values 4x4,2x2 and 1x1 have were
taken[13]. Considering all these parameters of the proposed
model, the total summary of eq 2, 3, and 4 is given by eq..5

O (�� ∗ �� ∗ ��� ∗ ����) + O (
 ���

�
∗

���

�
∗ ���)

+ O (Nin * Nout) 5

International Journal Of Educational Research 128 (2025)

Page No : 147

To prove this practically, experiments were performed with
different CNN models to examine 2 and 4 and the overall
time required for the model according to eq 5.

The analysis focuses on the time complexity of CNN
models, exploring how it varies with parameters such as the
number of convolutions and fully connected layers, pooling
size, filter size, number of filters, stride, and padding. A
standardized image size of 227 × 227 pixels was utilized

across the CNN models. Leaky ReLU activation functions
are employed in all layers except the output layer, where
Softmax activation is used. A batch size of 32, learning rate
of 0.0001 with the Adam optimizer, and the same padding
were employed[14]. Different CNN models were selected
based on variations in these parameters. The model setup
parameters, detailed in Table 2, are defined by eq. 2 and 4:

Table 2 CNN model setup Parameters

Model

Number Of

Convolution

Layers

Number of Filters Pooling Size Filter Size FC

CNN-1 4 32,64 [2x2, 1x1] [5x5, 5x5] 1

CNN-2 4 [32, 64, 128] [2x2, 1x1] [11x11] 1

CNN-3 5 [32, 64, 128, 256] [2x2, 1x1] [11x11, 3x3] 2

CNN-4 5 [32, 64, 128, 256,

512]

[2x2, 1x1] [11x11, 3x3, 1x1] 3

AlexNet 5 [96,256] [3x3] [11x11,3x3] 3

VGG 16 [64,128,256,512] [2x2] [3x3] 3

GoogleNet 22 Varies [3x3,5x5] [5x5,3x3,1x1] 1

Nightshade-CNN

5
[32, 64, 128, 256,

512]
[2x2, 1x1] [11x11, 3x3, 1x1] 1 Enhanced Nightshade-

CNN

The time complexity of the CNN models was evaluated
using Google Colab with NVIDIA GPUs (TESLA T4 and
A100), by analyzing various CNN parameters and

execution epochs for nightshade crop leaf datasets, as
shown in Table 3.

Table 3 CNN parameters and execution epochs for nightshade crop leaf datasets

Model
Number Of
Convolution

Layers
FC Filter Size

Epochs

(Times in
Hrs.)

CNN-1 4 1 [5x5, 5x5] 2.5

CNN-2 4 1 [11x11] 4.5

CNN-3 5 2 [11x11, 3x3] 5.5

CNN-4 5 3 [11x11, 3x3, 1x1] 9

AlexNet 5 3 [11x11,3x3] 8

VGG 16 3 [3x3] 26

GoogleNet 22 1 [5x5,3x3,1x1] 48

Nightshade-CNN[9-10] 5 1 [11x11, 3x3, 1x1] 4

Enhanced Nightshade-CNN[11] 5 1 [11x11, 3x3, 1x1] 6

Table 3 compares various neural network models based on
the number of convolution layers, fully connected (FC)
layers, filter sizes, and training time (epochs in hours). The
following is a brief explanation.

 CNN-1:4 convolution layers, 1 FC layer, filter
sizes of 5x5, with training times increasing from
0.5 to 2.5 hours over 100 to 500 epochs.

 CNN-2: Similar to CNN-1, but with an 11 × 11
filter, and its training time increases from 0.5 to
4.5 hours.

 CNN-3:5 convolution layers, 2 FC layers, using
filters of 11 × 11 and 3 × 3, with longer training
times (up to 5.5 hours).

 CNN-4:5 convolution layers, 3 FC layers, with
filters 11 × 11, 3 × 3, and 1 × 1, the training time
increased significantly to 9 h at 500 epochs.

 AlexNet: five convolution layers, three FC layers,
and filters similar to CNN-4, requiring up to 8 h.

 VGG: 16 convolution layers, three FC layers,
with 3 × 3 filters, requiring much more training
time (up to 26 h).

 GoogleNet: 22 convolution layers, one FC layer,

using various filters, and required the longest
training time (up to 48 h).

International Journal Of Educational Research 128 (2025)

Page No : 148

 Nightshade-CNN: five convolution layers, one
FC layer, with filters similar to CNN-4, and
training for up to 4 h.

 Enhanced Nightshade-CNN: Same architecture
as Nightshade-CNN, but with a slightly longer
training time of up to 6 h.

Space Complexity

Parameters, intermediate activations, and other data models
during training and inference. In CNNs, location
complexity depends on conditions such as the number of
parameters in the model, its size, and the size of the average
maps created by each layer[15-17]. or the densely
connected layers are more complex. Additionally, large
batch sizes can increase the memory requirements during
training. Managing the complexity of a site is especially
important in areas where resources are limited, such as edge
devices or mobile applications. This can help protect deep
learning models while making them efficient. In the context
of CNNs, the required resources, including time and
memory (space) complexity, are issues of concern. To
solve these problems, the Nightshade-CNN [9,10] and
Enhance-Nightshade-CNN[11] models use special filters

(11 × 11, 3 × 3, and 1 × 1) with a total of six layers. This
method helps reduce the number of inconsistencies and,
hence, the complexity of the site.
The space complexity of the model depends on the weight,
which is determined by the number of input channels (c),
weight (w), height (h), and the number of output channels
(k), with 'k' representing the bias.

Each filter in an instance of a convolutional layer has a set
of parameters, which are trainable parameters that arrive at
by taking the product of the number of input channels (c),
width (w), and height (h) of the filter and the number of
filters (k), thus cwhk. These parameters are learned during
training to obtain relevant features from the input data. Bias
terms are extra variables incorporated into a neural network
layer to enhance the model’s ability to fit the training data.
Every filter has a bias term that provides k bias parameters
in total.

By adding the weights and bias terms, the total number of
parameters |W| in the convolutional layer was calculated
using eq. 6
|W| = cwhk + k
 =(cwh+1)k 6

Figure 3 Space Complexity of Nightshade Crop Leaf

Figure 3 shows that the nightshade crop leaf image size
was c × A × D

7.

 Where A= width
 D = height
 c = channel or feature map.

The weights were downloaded and stored in memory, and
the required space was considered. The model has an input
image with dimensions AxD and convolves it with a kernel
of size c × w × h.

The number of parameters associated with each neuron in
the fully connected (FC) layer is determined by the spatial
dimensions (width and height) of the input image or feature
map and the dimensions of the hidden layer. The effective
width of the receptive field of the hidden layer was (A-
w+1), and the effective height was (D-h+1). By multiplying
these two terms, we obtained the total number of
parameters per neuron. Each neuron in the FC layer has a
weight parameter for each connection from the input

features along with its associated bias parameter.
Therefore, the total number of parameters for the weights
and biases was 2k.
Multiplying the number of parameters per neuron by the
total number of neurons (k) yields the total number of
parameters in the fully connected layer:.

Hence
resultant kernel = 2k(A-w+1) (D-h+1) 8

 where A image width,
 D=image height,
 w=hidden layer width,
 h= hidden layer height, and
 k=bias in no of kernels.

Therefore, the total required space for the model is equal to
the addition of eq. 6,7 and 8.
Hence,

International Journal Of Educational Research 128 (2025)

Page No : 149

Total Space requirement = cAD + k(cwh+1) + 2k(A-w+1)

(D-h+1) 9

The spatial complexity of a convolutional neural network
(CNN) model depends on various factors, including the
size of the input image, the total number of weights, and the
dimensions of the hidden layer feature maps. Therefore,
space complexity, denoted as (cAD + k(cwh+1) + 2k(A-
w+1) (D-h+1), provides an estimate of the amount of
memory required for these models.
 The spatial complexity analysis of CNN models includes
various parameters, such as convolution and fully

connected layers, batch size, filter size, and regularization
techniques. Based on these variations, models trained on
227 × 227 images with a dropout of 0.5 and a batch size of
32 were chosen. Memory requirements were calculated
using eq. 9, with detailed results shown in Table 3, whereas
the implementation used NVIDIA Tesla T4 and A100
Tensor GPUs.

Table 4 highlights the correlation between model size and storage space.

Model

Numbe
r Of

Convol
ution

Layers

FC GPU Type
Memory

Requirement
Processor

AlexNet 5 3 Tesla T4 16GB NVIDIA Tesla T4

VGG 16 3
A100
Tensor

40 GB
NVIDIA A100
Tensor Core

GoogleNet 22 1
A100
Tensor

40 GB
NVIDIA A100
Tensor Core

Nightshade-CNN[8-10] 5 1 Tesla T4
16GB NVIDIA Tesla T4 Enhanced Nightshade-

CNN[11]
5 1 Tesla T4

Table 4 highlights the correlation between the model size
and storage space, with larger models such as VGG and
GoogleNet requiring more storage space because of their
extensive layering. By contrast, Nightshade-CNN and
Enhanced Nightshade-CNN use Google infrastructure with
Tesla T4 GPUs in an NVIDIA environment. The storage
needs are affected by the size of the model and the
dimensions of the input image, including the height and
width.
From Table 3, the following points have been concluded:
 The classic AlexNet model is known for its

pioneering role in deep learning with moderate
computational requirements.

 The deeper VGG model requires more computational
resources, particularly for handling larger datasets.

 GoogleNet focuses on reducing the number of
parameters through its inception modules, making it
more efficient, despite having more layers.

 NightShade-CNN appears to be a more lightweight
model with fewer layers and lower memory
requirements.

 The Enhanced Nightshade-CNN requires an
additional preprocessing step; however, the final
storage requirement remains the same as that of the
Nightshade-CNN.

5. CONCLUSION

The time complexity of a model is greatly influenced by
factors such as the number of layers, filters, and filter size,
whereas the space complexity is largely determined by the
size of the model. Models characterized by fewer layers and
smaller batch sizes generally exhibit lower space
complexity. Thus, meticulous design considerations are

vital for enhancing both the time complexity O (�� ∗

�� ∗ ��� ∗ ����) + O (
 ���

�
∗

���

�
∗ ���) + O (

Nin * Nout) and the space complexity (cAD + k(cwh+1)
+ 2k(A-w+1) (D-h+1)) in the Nightshade-CNN and
Enhanced Nightshade-CNN models.

Funding Statement No funding received.

Data availability Plant Village repository was used for the
experiment. The actual dataset is available at
https://www.kaggle.com/datasets/emmarex/plantdisease.

Code availability Proposed CNN models has been
implemented in python with the OpenCV environment and
executed on Google colab environment.

DECLARATIONS

Conflicts of interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
influenced the work reported in this study.

Ethics approval Not Applicable.

Consent to participate Not Applicable.

Author Contribution Statement:

International Journal Of Educational Research 128 (2025)

Page No : 150

Barkha Joshi: Conceived the research idea, designed the
methodology, conducted data analysis, and performed the
experiments. Wrote the original draft of the manuscript.
Also served as the corresponding author, handling
communication with the journal, submitting the
manuscript, and responding to reviewer comments. First
author.

Dr. Hetal Bhavsar: Provided guidance throughout the
study, reviewed and critically revised the manuscript, and
suggested appropriate journals for submission.

All the authors have accepted responsibility for the entire
content of this submitted manuscript and approved
submission.

REFERENCES

1. Krizhevsky, A., Sutskever, I., & Hinton, G. E.
(2012). ImageNet Classification with Deep
Convolutional Neural Networks. Advances in
Neural Information Processing Systems.

2. Simonyan, K., & Zisserman, A. (2014). Very
Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv preprint
arXiv:1409.1556.

3. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed,
S., Anguelov, D., ... & Rabinovich, A. (2015).
Going Deeper with Convolutions. Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition.

4. Han, S., Pool, J., Tran, J., & Dally, W. (2015).
Learning both Weights and Connections for
Efficient Neural Networks. Advances in Neural
Information Processing Systems.

5. Mohanty, S. P., Hughes, D. P., & Salathé, M.
(2016). Using Deep Learning for Image-Based
Plant Disease Detection. Frontiers in Plant
Science.

6. Pan, S. J., & Yang, Q. (2009). A Survey on
Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering.

7. Huang, G., Liu, Z., Van Der Maaten, L., &
Weinberger, K. Q. (2017). Densely Connected
Convolutional Networks. Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition.

8. Joshi, B. M., & Bhavsar, H. (2020). Plant leaf
disease detection and control: A survey. Journal
of Information and Optimization Sciences, 41(2),
475–487.
https://doi.org/10.1080/02522667.2020.1734295.

9. Joshi, B.M., Bhavsar, H. (2023). Lycopersicon
Crop Leaf Disease Identification Using Deep
Learning. In: Pandit, M., Gaur, M.K., Kumar, S.
(eds) Artificial Intelligence and Sustainable
Computing. ICSISCET 2022. Algorithms for
Intelligent Systems. Springer, Singapore.
https://doi.org/10.1007/978-981-99-1431-9_2.

10. M. Joshi, B. ., & Bhavsar, H. . (2023). Deep
Learning Technology based Night-CNN for
Nightshade Crop Leaf Disease
Detection. International Journal of Intelligent
Systems and Applications in Engineering, 11(1),

215–227. Retrieved from
https://ijisae.org/index.php/IJISAE/article/view/2
461.

11. Joshi, B.M., Bhavsar, H. A nightshade crop leaf
disease detection using enhance-nightshade-CNN
for ground truth data. Vis Comput (2023).
https://doi.org/10.1007/s00371-023-03127-y.

12. https://www.kaggle.com/datasets/emmarex/plant
disease.

13. Xiang, Y., Zhou, H., Li, C. et al. Deep learning in
motion deblurring: current status, benchmarks and
future prospects. Vis Comput (2024).
https://doi.org/10.1007/s00371-024-03632-8.

14. Xu, C., Han, K. & Xu, W. Image-aware layout
generation with user constraints for poster
design. Vis Comput (2024).
https://doi.org/10.1007/s00371-024-03657-z.

15. Salar, A., Ahmadi, A. Enhancing high-vocabulary
image annotation with a novel attention-based
pooling. Vis Comput (2024).
https://doi.org/10.1007/s00371-024-03618-6.

16. Islam, M., Dinh, A., Wahid, K., and Bhowmik, P.:
Detection of potato diseases using image
segmentation and multiclass support vector
machine. In: 2017 IEEE 30th Canadian
Conference on Electrical and Computer
Engineering (CCECE) (pp. 1–4). IEEE (2)

17. Guadagna, P., Fernandes, M., Chen, F., et al.:
Using deep learning for pruning region detection
and plant organ segmentation in dormant spur-
pruned grapevines. Precision Agric. 24, 1547–
1569 (2023). https://doi.org/10.1007/s11119-023-
10006-y.

18. Cheng Y., F. Yu, R. Feris, S. Kumar, A.
Choudhary, S. Chang (2015) “An Exploration of
Parameter Redundancy in Deep Networks with
circulant projections”
https://doi.org/10.48550/arXiv.1502.03436.

19. Giusti, A.; Dan, C.C.; Masci, J.; Gambardella,
L.M.; Schmidhuber, J. Fast image scanning with
deep max-pooling convolutional neural networks.
In Proceedings of the 20th IEEE International
Conference on Image Processing, Melbourne,
Australia, 15–18 September 2013; pp. 4034–
4038.

20. T. Li, M. Xu and X. Deng, "A deep convolutional
neural network approach for complexity reduction
on intra-mode HEVC," 2017 IEEE International
Conference on Multimedia and Expo (ICME),
Hong Kong, China, 2017, pp. 1255-1260, doi:
10.1109/ICME.2017.8019316.

21. Saad Naeem, Noreen Jamil, Habib Ullah

Khan, Shah Nazir “Complexity of Deep

Convolutional Neural Networks in Mobile

Computing”.

https://doi.org/10.1155/2020/3853780.

22. T. Makkar, Y. Kumar, A. K. Dubey, Á. Rocha and

A. Goyal, "Analogizing time complexity of KNN

and CNN in recognizing handwritten digits," 2017

Fourth International Conference on Image

Information Processing (ICIIP), Shimla, India,

2017, pp. 1-6, doi: 10.1109/ICIIP.2017.8313707.

International Journal Of Educational Research 128 (2025)

Page No : 151

23. Abdellatef H, Karam LJ. Reduced-complexity

Convolutional Neural Network in the compressed

domain. Neural Netw. 2024 Jan;169:555-571. doi:

10.1016/j.neunet.2023.10.020. Epub 2023 Oct 24.

PMID: 37952391.

24. Zhao, Yulin, Donghui Wang, Leiou Wang, and

Peng Liu. 2018. "A Faster Algorithm for

Reducing the Computational Complexity of

Convolutional Neural Networks" Algorithms 11,

no. 10: 159. https://doi.org/10.3390/a11100159.

International Journal Of Educational Research 128 (2025)

Page No : 152

