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Abstract—The ever increasing generation of digital data and 
its applications in multimedia, cloud computing, communication 
systems etc require efficient methods of data compression for 
storage and transmission purposes. Conventional data compression 
methods are applied and used with the specific goal to produce a 
minimal file size while at the same time preserving data integrity 
hence, lossless compression is very vital in instances whereby the 
original data must be reconstructed to the precise representation. 
This work examines two widely used lossless compression methods: 
Huffman coding and Arithmetic coding. The performance of both 
techniques is compared using the following parameters: the length 
of the compressed data, entropy, redundancy in bits, and the rate 
of compression on a text data set and an audio file. This paper 
verifies the influence of the proposed approaches in text and audio 
compression experiments through Arithmetic coding and Huffman 
coding, respectively; the later yields a better result due to its 
binary characteristic. The results imply that the choice should be 
made focusing on the peculiarities of the data before defining the 
compression method. 

Index Terms—entropy, redundancy, arithmetic coding, Huffman 
coding, compression ratio, and audio 

 
I. INTRODUCTION 

As the availability of social media, cloud storage multimedia, 
and IoT devices has increased exponentially the management of 
large amount of data has become important [1] [2]. However, 
current and future advances in computers and communication 
technology are rapidly generating a massive amount of data 
and we require compression techniques where the amount of 
data to be stored and transmitted is greatly minimized but 
the essence of the information is retained. There are several 
performances for data compression for instances in transferring 
multimedia information, transmitting data on networks, and 
minimizing storage space [3].With the use of lossless data 
compression algorithms, it is possible to precisely rebuild the 
original data from the compressed data without any information 
loss. For applications like text files, medical photographs, or 
legal papers where data correctness is crucial, they are therefore 
indispensable [1]. 

Different techniques are used in data compression to mini- 
mize file sizes without compromising data integrity. Arithmetic 
coding and Huffman coding are two popular lossless compres- 
sion methods that assign codes based on symbol frequency. 
When applied to datasets with known symbol probabilities, 
Huffman coding—an entropy-based method—assigns variable- 
length codes to symbols. However, when symbol probabilities 
are extremely skewed, arithmetic coding frequently achieves 
greater compression ratios since it encodes the entire message 
as a single fractional integer. Arithmetic coding is more ver- 
satile than Huffman coding, but it requires more computing 
power. 

Run-Length Encoding (RLE) and Lempel-Ziv-Welch (LZW) 
are two further compression techniques that are important for 
data compression. Specifically designed for text compression, 

dictionary-based latent zone wording (LZW) efficiently han- 
dles repetitive data by substituting dictionary references for 

sequences of recurrent data patterns. However, in situations 
where symbol distributions are erratic, Huffman and arithmetic 
coding usually perform better than LZW. Compared to Huffman 
or arithmetic coding, RLE is less flexible as it only works with 
extremely repetitive material. It is a simpler method of data 
compression that involves encoding repeated sequences [2]–[4]. 

Conversely, lossy compression methods—like MP3 for au- 
dio—reduce file sizes by removing less noticeable information, 

sacrificing some fidelity in exchange for a substantial size 
reduction [5], [6]. Huffman coding and Arithmetic coding 
preserve data integrity, making them more appropriate for 
applications that require lossless compression, even though 

lossy approaches are useful in multimedia applications. 

II. BACKGROUND 

Lossless compression techniques are essential for main- 
taining data accuracy while lowering file sizes for effective 
transmission and storage in an era where storage and bandwidth 
needs are rising. Robust compression algorithms are essential 
for the efficient management of data quantities in applications 
such as cloud storage optimization, data archival, and real-time 
multimedia streaming [7]. 

In situations where data integrity cannot be jeopardized, 
lossless compression techniques guarantee that the original data 
may be precisely restored from the compressed form. These 
techniques are not the same as lossy compression methods, like 
JPEG for images and MP3 for audio, which reduce file size by 
sacrificing some fidelity in order to attain better compression 
ratios [5], [6]. Although lossless compression is essential for 
applications involving text files, medical imaging, legal papers, 
and other sectors where precise reconstruction is crucial, lossy 
compression is suitable for the transfer of multimedia informa- 
tion, where small quality losses are acceptable. 

Arithmetic coding and Huffman coding are two of the most 
used algorithms among lossless compression approaches. David 
Huffman developed Huffman coding in 1952, and it is a funda- 
mental method where symbols are given variable-length codes 
according to how frequently they occur in the dataset. Huffman 
coding is quite effective for datasets with known and consistent 
symbol distributions, but it can lose some of its optimality for 
severely skewed or irregular symbol probabilities [7], [8]. When 
symbol probabilities are not uniform, arithmetic coding—which 
reduces the entire message to a single fractional number—offers 
a more efficient method of compression. Arithmetic coding 
requires more resources than Huffman coding because of its 
higher computational complexity, which is the price paid for 
its increased efficiency [2]. 

Apart from Huffman and Arithmetic coding, alternative tech- 
niques for compression include Lempel-Ziv-Welch (LZW) and 
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Run-Length Encoding (RLE) [4], which are lossless methods. 
LZW is a dictionary-based technique that works well with 
highly redundant text input by substituting references to a 
dictionary of patterns for sequences of symbols. Huffman 
and arithmetic coding often perform better; however, LZW 
has trouble with datasets with irregular symbol distributions. 
RLE is a more straightforward method that compresses data 
containing repetitive sequences, like some kinds of images, very 
effectively. It does this by encoding consecutive runs of repeated 
symbols. RLE can’t, however, be applied to more complicated 
datasets with unpredictable redundancy, such as text or audio 
[2], [3]. 

The efficiency of data transmission and storage has greatly 
increased with the invention of various compression techniques. 
The best compression technique, however, is frequently deter- 
mined by the particulars of the data. For example, arithmetic 
coding might be more effective for text compression when 
symbol frequencies are predictable, but Huffman coding works 
better for audio data with more unpredictable distributions. 
While Huffman and Arithmetic Coding offer greater flexibility 
for a wider range of datasets, LZW and RLE are good substi- 
tutes in some usage scenarios [2], [3]. 

 
 

III. ESSENTIAL EVALUATION METRICS 

 
In comparing the two methods, the following essential eval- 

uation metrics were used: 

1. Entropy (H(X)): Entropy measures the theoretical limit of 
average code length and is calculated using the formula [9], 

 
 

Algorithm 1 Huffman Coding  

1: Calculate Frequency 
2: Make a priority queue and put all the symbols together with 

their frequencies. 
3: while there is more than one node in the queue do 
4: Drop the two symbols with the least frequency count. 
5: Create a new internal node with these two nodes as 

child nodes and set its frequency as the sum of their 
frequencies. 

6: Put the new node back into the queue to be compared 
against other symbols. 

7: end while 
8: When only one node remains, it forms the root of the 

Huffman Tree. 
9: Assign Codes 

10: for each symbol in the Huffman Tree do 
11: Walk through the tree, assigning ’0’ along the left edges 

and ’1’ along the right edges. 
12: Assign binary codes to each symbol based on the path 

from the root to the symbol. 
13: end for 
14: Generate Encoded Data 
15: To get the compressed output, replace each symbol in the 

original dataset with its corresponding Huffman code. 
 

 

 
n 

H(X) = − p(xi) log2 p(xi) (1) 
i=1 

 
 

where      p(xi)istheprobabilityofsymbolxiand 

n is the number of unique symbols. 

2. Average Code Length (L): The average code length is 
determined by the formula [9], 

L = i = 1np(xi) ∗ l(xi) (2) 

where l(xi)representsthelengthofthecodeforsymbolxi. 

3. Redundancy (R): Redundancy reflects the variance be- 
tween the actual code length and the theoretical entropy [9], 

 
calculatedasR = L − H(X). (3) 

4. Compression Ratio (CR): The compression ratio is de- 
fined as the ratio of the original data size to the compressed 
size,expressed as [9] 

 
expressedasCR = OriginalSize/CompressedSize.      (4) 

 
IV. METHODOLOGY 

 
A. Huffman Coding 

 
1) Huffman Coding Algorithm: 

 

 
 

 

 
Algorithm 2 Arithmetic Coding  

1: Calculate Probabilities 
2: Calculate the probability of each symbol in the data set.. 
3: Create Cumulative Probabilities. 
4: build a cumulative probability table for the symbols. . 
5: Set Initial Interval 
6: Define the initial interval as [0, 1). 
7: Encode the Message 
8: for each symbol in the dataset do 

the interval according to the cumulative probabil- 
ity.Calculate the new interval boundaries using the cur- 
rent symbol’s cumulative probability. 

9:10: end for 
11: Output the Final Value any value from the final interval as 

the encoded output.. 
 

 

Construct a Huffman Tree 

Calculate Symbol Frequency. 

Input Data 
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Parameter Huffman Coding Arithmetic Coding 

Compressed Size 17 bits 10 bits 
Compression Ratio 0.1771 0.1042 
Entropy 1.2783 bits/symbol 1.2783 bits/symbol 
Redundancy 0.1384 0 
Average Length 1.4167 bits/symbol 1.2783 bits/symbol 

TABLE I 
COMPARISON  BETWEEN  HUFFMAN  AND  ARITHMETIC  CODING 

 

 

Comparison of Huffman and Arithmetic Coding for Text 
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A. Text Dataset Results 

Arithmetic Coding: 
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V. RESULTS 

0 

• Compressed Size: 10 bits 
• Compression ratio: 0.1042 
• Active Length: 1.2784 bits/symbol 
• Entropy: 1.2783 bits/symbol 
• Redundancy: 0 

. Huffman Coding: 

• Compressed Size: 17 bits 
• Compression ratio: 0.1771 
• Active Length: 1.4167 bits/symbol 
• Entropy: 1.2783 bits/symbol 
• Redundancy: 0.1384 

B. Text Dataset Results 

This could clearly be observed from the results captured in 
the results table indicating the differences between Huffman 
coding and Arithmetic coding. Huffman has been compressed 
to possess a size of 17 bits while Arithmetic has been com- 
pressed to possess the smallest size of 10 bits. This means that 
Arithmetic coding definitely brings down the data size to a 
lower level of more effectiveness in the aspects of storage and 
transmission. 

When analysing the compression ratio, Huffman coding 
provides a ratio of 0.1771 with the compressed data being 
approximately 17.71 percent in size to the original. For instance 
Arithmetic coding yields a slightly improved compression rate 
of 0.1042 thus occupying only 10.42 percent of the original 
space. They both share the same entropy of 1.2783 bits per 
symbol, that is, the performance achieved is the same for each 
of the symbols. 

However, Huffman coding has some inefficiencies, for exam- 
ple a redundancy of 0.1384 while Arithmetic coding has zero 
redundancy which simply means that every bit in the image 
has been used without wastage. Even the number average is the 
number of bits assigned to encoded symbols and is observed 
that the Huffman coding is the average of about 1.4167 bits per 
symbol while Arithmetic coding has a much lower average of 
only 1.2783 bits per symbol which is quite optimal. Based in 
these results, one could conclude that in general, Arithmetic 
coding is preferred for lossless data compression since it 
compresses data to a lower size, hence using smaller space. 

 
 
 
 
 

Fig. 1. Comparison of Huffman and Arithmetic Coding based on various 
parameters. 

 

 
C. Audio Dataset Results 

The following results were obtained for the audio file: 
Huffman Coding: 

• Entropy: 14.37 bits/symbol 
• Redundancy: 0.04 bits/symbol 
• Compression Ratio: 1.11 
• Average Code Length : 14.40 bits 

Arithmetic Coding: 

• Entropy: 14.37 bits/symbol 
• Redundancy: 0.0 bits/symbol 
• Compression Ratio: 1.14 
• Average Code Length : 14.37 bits 

D. Audio Dataset Results 

For the audio dataset, the results are shown in Table II 
Thus, the table below compares the Huffman coding with the 

Arithmetic coding on the basis of certain important parameters. 
The entropy for both methods turned out to be identical and 
equaled 14.37 bits, thus allowing providing a similar amount 
of information for each symbol in the given data set. This is 
not bad news because both techniques are useful for capturing 
such data and they both appear to perform reasonably well. 

We are also able to determine that the Huffman coding 
takes an average of approximately 14.40 bits per symbol while 
Arithmetic coding takes a slightly lower average of about 14.37 
bits per symbol on average. This means that Arithmetic coding 
can use fewer bits to represent the same information, which is 
always an advantage when it comes to the size of files that need 
to be stored. 

Third, the table below presents the compression ratio as- 
serting the effectiveness of each method in minimizing the 
size of the data. While comparing the Huffman with the 

Calculate Symbol Probabilities 

Input Data 

Compressed Data Output 

Produce Data Encoded 

Huffman Coding 
Arithmetic Coding 

Data Encoded as Fraction 

Produce Cumulative Probability Ranges 
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Comparison of Huffman and Arithmetic Coding for Audio 
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Fig. 2. Comparison of Huffman and Arithmetic Coding based on various 
parameters 

 

 
Arithmetic coding, the respective ratio of the frequency of 
code words is 1.11 while that of the Arithmetic coding is 
slightly lower than the Huffman, with a frequency of ratio 
1.14. This mean that the method is able to better compress the 
data based on the higher compression ratio recorded. However, 
Arithmetic coding performs a better job of converting the size 
of the data as compared to Huffman coding.Last but not the 
least, the implication of redundancy metric is to determine the 
manner which each method employs bits. Huffman coding has a 
redundancy of 0.03 bits, so the amount of overhead in Huffman 
coding is extremely small. On the other hand Arithmetic coding 
has zero redundancy that is 0.0 bits, implying that all the bits 
are used appropriately and no extra bit is used. 

Therefore, we can infer from Table 1 that, in general, in 
comparison to the Huffman coding, Arithmetic coding is a 
better compression technique in sense of average code length 
as well as the ration achieved and has advantage over Huffman 
both in affecting space also in regard with redundancy. All 
these therefore make Arithmetic coding particularly desirable 
for applications that seek to achieve the highest levels of data 
compression. 

 
TABLE II 

COMPARISON  BETWEEN  HUFFMAN  CODING  AND  ARITHMETIC  CODING 

 

Metric Huffman Coding Arithmetic Coding

Entropy 14.37 bits 14.37 bits 
Average Code Length 14.40 bits 14.37 bits 
Compression Ratio 1.11 1.14 
Redundancy 0.03 bits 0.0 bits 

 
 

VI. ANALYSIS 

The results presented for both text and audio show how Huff- 
man coding and Arithmetic coding works and its performance. 
Looking at the text dataset, the Arithmetic coding is compressed 
with only 10 bits, while Huffman coding has compressed the 
data to 17 bits, hence it is clear that Arithmetic coding is much 
more efficient in minimizing data size through use of fewer 
bits to represent the same data. The efficiency of both methods 
is estimated to be equal to 1.2783 bits/symbol, thus, both 
methods provide the same amount of information per symbol. 
Nevertheless, Huffman coding has 0.1384 bits of redundancy, 

which speaks to the fact that there is some inefficiency to be 
found in Huffman’s encoding, while Arithmetic coding has 
none, or 0.0 bits, meaning it is true to form and uses all of 
the bits without any extra or spare. This has clearly shown that 
Arithmetic coding has a better compression ratio for the text 
dataset than any of the two mentioned methods. 

The encoding techniques show that, for the audio dataset, 
both techniques have an entropy of 14.37 bits per symbol 
which powerfully suggest that they encode the same amount of 
information. Comparing with the Huffman coding and Arith- 
metic coding, this is how the average code length looks like, 
Average code length = 14.40 bits symbol for Huffman coding 
and slight better with 14.37 bits symbol for Arithmetic coding. 
As indicated regarding the compression ratio, the Huffman 
coding has a value of 1.14, which is slightly higher than that 
recorded in Arithmetic coding of 1.11. Huffman coding may be 
even more efficient in this sense, reminding that this method 
is generally thought to yield better results in reducing the size 
of files. Moreover, analysis based on the redundancy metric 
shows that redundancy of Huffman coding is 0.03 bits while 
redundancy of Arithmetic coding is 0.00, which suggest the 
efficiency of Arithmetic coding. 

Taken together, lessons from both datasets underscore the 
merits and demerits of each form of coding. Based on the 
comparison of the compressed text-dataset results, Arithmetic 
coding seems to require lesser bits to compress and has less 
redundancy than Huffman coding method to be preferred for 
data compression. Analyzing the results of the audio dataset it 
is possible to see that although both methods are quite similar 
by entropy and redundancy metrics, Huffman coding is slightly 
better by the rate of compression ratio. But Arithmetic coding 
is superior in average code length and has no matter of fact 
zero redundancy. This implies that although Huffman coding 
can work, especially for Huffman coding audio data, Arithmetic 
coding often outperforms other methods, especially if reducing 
data size and improving efficiency is tenable. The decision of 
which method has to be used has to take into account properties 
and additional need of the dataset to be compressed. 

 
VII. CONCLUSION 

Altogether, the analysis of Huffman coding and Arithmetic 
coding enables understanding of the possible directions in data 
compression development. In realisation of the different data 
set scenarios, arithmetic coding appears to offer the shortest 
length of the compressed data set with the least redundant 
and as such is the better data compression model. However, 
as clearly seen, these two methods suggest the same entropy, 
and the average code length and redundancy make Arithmetic 
coding more beneficial. 

For recent coded entropy in audio dataset, both techniques 
have approximately equal entropy, but the compression ratio 
was found little higher in case of Huffman coding than that 
of Arithmetic coding. However Arithmetic coding has slightly 
lower mean freedom ratio and zero redundancy to back up its 
efficiency. 

So, both Huffman coding and Arithmetic coding are ways 
of data compression though depending with the nature and 
needs of a given data set, Huffman or Arithmetic coding should 
be preferred. Arithmetic coding is more appropriate in most 
cases when the size of the storage file and the efficiency of the 
encoding are significant; Huffman is beneficial when the com- 
pression ratio is essential, for example, in the case of audio data. 
Subsequent studies may extend the presented approach toward 

Huffman Coding 
Arithmetic Coding 
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novel datasets and additional practical scenarios to determine 
specific optimal methods of lossless data compression. 
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