
Efficiency Evaluation Between Arithmetic and
Huffman Coding for Data Compressions

Zahed Shikilkar 1, Ganesh Shinde 2, Girish Ingale 3, Tejas Mukkawar 4, Dipti Pandit 5

Student, Electronics and Telecommunications, Vishwakarma Institute of Information Technology, Pune, India 1 2 3 4
Assistant Professor, Electronics and Telecommunications, Vishwakarma Institute of Information Technology Pune, India 5

Abstract—The ever increasing generation of digital data and
its applications in multimedia, cloud computing, communication
systems etc require efficient methods of data compression for
storage and transmission purposes. Conventional data compression
methods are applied and used with the specific goal to produce a
minimal file size while at the same time preserving data integrity
hence, lossless compression is very vital in instances whereby the
original data must be reconstructed to the precise representation.
This work examines two widely used lossless compression methods:
Huffman coding and Arithmetic coding. The performance of both
techniques is compared using the following parameters: the length
of the compressed data, entropy, redundancy in bits, and the rate
of compression on a text data set and an audio file. This paper
verifies the influence of the proposed approaches in text and audio
compression experiments through Arithmetic coding and Huffman
coding, respectively; the later yields a better result due to its
binary characteristic. The results imply that the choice should be
made focusing on the peculiarities of the data before defining the
compression method.

Index Terms—entropy, redundancy, arithmetic coding, Huffman
coding, compression ratio, and audio

I. INTRODUCTION

As the availability of social media, cloud storage multimedia,
and IoT devices has increased exponentially the management of
large amount of data has become important [1] [2]. However,
current and future advances in computers and communication
technology are rapidly generating a massive amount of data
and we require compression techniques where the amount of
data to be stored and transmitted is greatly minimized but
the essence of the information is retained. There are several
performances for data compression for instances in transferring
multimedia information, transmitting data on networks, and
minimizing storage space [3].With the use of lossless data
compression algorithms, it is possible to precisely rebuild the
original data from the compressed data without any information
loss. For applications like text files, medical photographs, or
legal papers where data correctness is crucial, they are therefore
indispensable [1].

Different techniques are used in data compression to mini-
mize file sizes without compromising data integrity. Arithmetic
coding and Huffman coding are two popular lossless compres-
sion methods that assign codes based on symbol frequency.
When applied to datasets with known symbol probabilities,
Huffman coding—an entropy-based method—assigns variable-
length codes to symbols. However, when symbol probabilities
are extremely skewed, arithmetic coding frequently achieves
greater compression ratios since it encodes the entire message
as a single fractional integer. Arithmetic coding is more ver-
satile than Huffman coding, but it requires more computing
power.

Run-Length Encoding (RLE) and Lempel-Ziv-Welch (LZW)
are two further compression techniques that are important for
data compression. Specifically designed for text compression,

dictionary-based latent zone wording (LZW) efficiently han-
dles repetitive data by substituting dictionary references for

sequences of recurrent data patterns. However, in situations
where symbol distributions are erratic, Huffman and arithmetic
coding usually perform better than LZW. Compared to Huffman
or arithmetic coding, RLE is less flexible as it only works with
extremely repetitive material. It is a simpler method of data
compression that involves encoding repeated sequences [2]–[4].

Conversely, lossy compression methods—like MP3 for au-
dio—reduce file sizes by removing less noticeable information,

sacrificing some fidelity in exchange for a substantial size
reduction [5], [6]. Huffman coding and Arithmetic coding
preserve data integrity, making them more appropriate for
applications that require lossless compression, even though

lossy approaches are useful in multimedia applications.

II. BACKGROUND

Lossless compression techniques are essential for main-
taining data accuracy while lowering file sizes for effective
transmission and storage in an era where storage and bandwidth
needs are rising. Robust compression algorithms are essential
for the efficient management of data quantities in applications
such as cloud storage optimization, data archival, and real-time
multimedia streaming [7].

In situations where data integrity cannot be jeopardized,
lossless compression techniques guarantee that the original data
may be precisely restored from the compressed form. These
techniques are not the same as lossy compression methods, like
JPEG for images and MP3 for audio, which reduce file size by
sacrificing some fidelity in order to attain better compression
ratios [5], [6]. Although lossless compression is essential for
applications involving text files, medical imaging, legal papers,
and other sectors where precise reconstruction is crucial, lossy
compression is suitable for the transfer of multimedia informa-
tion, where small quality losses are acceptable.

Arithmetic coding and Huffman coding are two of the most
used algorithms among lossless compression approaches. David
Huffman developed Huffman coding in 1952, and it is a funda-
mental method where symbols are given variable-length codes
according to how frequently they occur in the dataset. Huffman
coding is quite effective for datasets with known and consistent
symbol distributions, but it can lose some of its optimality for
severely skewed or irregular symbol probabilities [7], [8]. When
symbol probabilities are not uniform, arithmetic coding—which
reduces the entire message to a single fractional number—offers
a more efficient method of compression. Arithmetic coding
requires more resources than Huffman coding because of its
higher computational complexity, which is the price paid for
its increased efficiency [2].

Apart from Huffman and Arithmetic coding, alternative tech-
niques for compression include Lempel-Ziv-Welch (LZW) and

International Journal Of Educational Research 128 (2024)

PAGE NO : 43

Σ

Give Symbols Binary Computations

Compressed Data Output

Produce Data Encoded

Run-Length Encoding (RLE) [4], which are lossless methods.
LZW is a dictionary-based technique that works well with
highly redundant text input by substituting references to a
dictionary of patterns for sequences of symbols. Huffman
and arithmetic coding often perform better; however, LZW
has trouble with datasets with irregular symbol distributions.
RLE is a more straightforward method that compresses data
containing repetitive sequences, like some kinds of images, very
effectively. It does this by encoding consecutive runs of repeated
symbols. RLE can’t, however, be applied to more complicated
datasets with unpredictable redundancy, such as text or audio
[2], [3].

The efficiency of data transmission and storage has greatly
increased with the invention of various compression techniques.
The best compression technique, however, is frequently deter-
mined by the particulars of the data. For example, arithmetic
coding might be more effective for text compression when
symbol frequencies are predictable, but Huffman coding works
better for audio data with more unpredictable distributions.
While Huffman and Arithmetic Coding offer greater flexibility
for a wider range of datasets, LZW and RLE are good substi-
tutes in some usage scenarios [2], [3].

III. ESSENTIAL EVALUATION METRICS

In comparing the two methods, the following essential eval-

uation metrics were used:

1. Entropy (H(X)): Entropy measures the theoretical limit of
average code length and is calculated using the formula [9],

Algorithm 1 Huffman Coding

1: Calculate Frequency
2: Make a priority queue and put all the symbols together with

their frequencies.
3: while there is more than one node in the queue do
4: Drop the two symbols with the least frequency count.
5: Create a new internal node with these two nodes as

child nodes and set its frequency as the sum of their
frequencies.

6: Put the new node back into the queue to be compared
against other symbols.

7: end while
8: When only one node remains, it forms the root of the

Huffman Tree.
9: Assign Codes

10: for each symbol in the Huffman Tree do
11: Walk through the tree, assigning ’0’ along the left edges

and ’1’ along the right edges.
12: Assign binary codes to each symbol based on the path

from the root to the symbol.
13: end for
14: Generate Encoded Data
15: To get the compressed output, replace each symbol in the

original dataset with its corresponding Huffman code.

n

H(X) = − p(xi) log2 p(xi) (1)
i=1

where p(xi)istheprobabilityofsymbolxiand

n is the number of unique symbols.

2. Average Code Length (L): The average code length is
determined by the formula [9],

L = i = 1np(xi) ∗ l(xi) (2)

where l(xi)representsthelengthofthecodeforsymbolxi.

3. Redundancy (R): Redundancy reflects the variance be-
tween the actual code length and the theoretical entropy [9],

calculatedasR = L − H(X). (3)

4. Compression Ratio (CR): The compression ratio is de-
fined as the ratio of the original data size to the compressed
size,expressed as [9]

expressedasCR = OriginalSize/CompressedSize. (4)

IV. METHODOLOGY

A. Huffman Coding

1) Huffman Coding Algorithm:

Algorithm 2 Arithmetic Coding

1: Calculate Probabilities
2: Calculate the probability of each symbol in the data set..
3: Create Cumulative Probabilities.
4: build a cumulative probability table for the symbols. .
5: Set Initial Interval
6: Define the initial interval as [0, 1).
7: Encode the Message
8: for each symbol in the dataset do

the interval according to the cumulative probabil-
ity.Calculate the new interval boundaries using the cur-
rent symbol’s cumulative probability.

9:10: end for
11: Output the Final Value any value from the final interval as

the encoded output..

Construct a Huffman Tree

Calculate Symbol Frequency.

Input Data

International Journal Of Educational Research 128 (2024)

PAGE NO : 44

Parameter Huffman Coding Arithmetic Coding

Compressed Size 17 bits 10 bits
Compression Ratio 0.1771 0.1042
Entropy 1.2783 bits/symbol 1.2783 bits/symbol
Redundancy 0.1384 0
Average Length 1.4167 bits/symbol 1.2783 bits/symbol

TABLE I
COMPARISON BETWEEN HUFFMAN AND ARITHMETIC CODING

Comparison of Huffman and Arithmetic Coding for Text

15

10

A. Text Dataset Results

Arithmetic Coding:

5

V. RESULTS

0

• Compressed Size: 10 bits
• Compression ratio: 0.1042
• Active Length: 1.2784 bits/symbol
• Entropy: 1.2783 bits/symbol
• Redundancy: 0

. Huffman Coding:

• Compressed Size: 17 bits
• Compression ratio: 0.1771
• Active Length: 1.4167 bits/symbol
• Entropy: 1.2783 bits/symbol
• Redundancy: 0.1384

B. Text Dataset Results

This could clearly be observed from the results captured in
the results table indicating the differences between Huffman
coding and Arithmetic coding. Huffman has been compressed
to possess a size of 17 bits while Arithmetic has been com-
pressed to possess the smallest size of 10 bits. This means that
Arithmetic coding definitely brings down the data size to a
lower level of more effectiveness in the aspects of storage and
transmission.

When analysing the compression ratio, Huffman coding
provides a ratio of 0.1771 with the compressed data being
approximately 17.71 percent in size to the original. For instance
Arithmetic coding yields a slightly improved compression rate
of 0.1042 thus occupying only 10.42 percent of the original
space. They both share the same entropy of 1.2783 bits per
symbol, that is, the performance achieved is the same for each
of the symbols.

However, Huffman coding has some inefficiencies, for exam-
ple a redundancy of 0.1384 while Arithmetic coding has zero
redundancy which simply means that every bit in the image
has been used without wastage. Even the number average is the
number of bits assigned to encoded symbols and is observed
that the Huffman coding is the average of about 1.4167 bits per
symbol while Arithmetic coding has a much lower average of
only 1.2783 bits per symbol which is quite optimal. Based in
these results, one could conclude that in general, Arithmetic
coding is preferred for lossless data compression since it
compresses data to a lower size, hence using smaller space.

Fig. 1. Comparison of Huffman and Arithmetic Coding based on various
parameters.

C. Audio Dataset Results

The following results were obtained for the audio file:
Huffman Coding:

• Entropy: 14.37 bits/symbol
• Redundancy: 0.04 bits/symbol
• Compression Ratio: 1.11
• Average Code Length : 14.40 bits

Arithmetic Coding:

• Entropy: 14.37 bits/symbol
• Redundancy: 0.0 bits/symbol
• Compression Ratio: 1.14
• Average Code Length : 14.37 bits

D. Audio Dataset Results

For the audio dataset, the results are shown in Table II
Thus, the table below compares the Huffman coding with the

Arithmetic coding on the basis of certain important parameters.
The entropy for both methods turned out to be identical and
equaled 14.37 bits, thus allowing providing a similar amount
of information for each symbol in the given data set. This is
not bad news because both techniques are useful for capturing
such data and they both appear to perform reasonably well.

We are also able to determine that the Huffman coding
takes an average of approximately 14.40 bits per symbol while
Arithmetic coding takes a slightly lower average of about 14.37
bits per symbol on average. This means that Arithmetic coding
can use fewer bits to represent the same information, which is
always an advantage when it comes to the size of files that need
to be stored.

Third, the table below presents the compression ratio as-
serting the effectiveness of each method in minimizing the
size of the data. While comparing the Huffman with the

Calculate Symbol Probabilities

Input Data

Compressed Data Output

Produce Data Encoded

Huffman Coding
Arithmetic Coding

Data Encoded as Fraction

Produce Cumulative Probability Ranges

V
al

ue
s

International Journal Of Educational Research 128 (2024)

PAGE NO : 45

Comparison of Huffman and Arithmetic Coding for Audio

10

5

0

Fig. 2. Comparison of Huffman and Arithmetic Coding based on various
parameters

Arithmetic coding, the respective ratio of the frequency of
code words is 1.11 while that of the Arithmetic coding is
slightly lower than the Huffman, with a frequency of ratio
1.14. This mean that the method is able to better compress the
data based on the higher compression ratio recorded. However,
Arithmetic coding performs a better job of converting the size
of the data as compared to Huffman coding.Last but not the
least, the implication of redundancy metric is to determine the
manner which each method employs bits. Huffman coding has a
redundancy of 0.03 bits, so the amount of overhead in Huffman
coding is extremely small. On the other hand Arithmetic coding
has zero redundancy that is 0.0 bits, implying that all the bits
are used appropriately and no extra bit is used.

Therefore, we can infer from Table 1 that, in general, in
comparison to the Huffman coding, Arithmetic coding is a
better compression technique in sense of average code length
as well as the ration achieved and has advantage over Huffman
both in affecting space also in regard with redundancy. All
these therefore make Arithmetic coding particularly desirable
for applications that seek to achieve the highest levels of data
compression.

TABLE II

COMPARISON BETWEEN HUFFMAN CODING AND ARITHMETIC CODING

Metric Huffman Coding Arithmetic Coding

Entropy 14.37 bits 14.37 bits
Average Code Length 14.40 bits 14.37 bits
Compression Ratio 1.11 1.14
Redundancy 0.03 bits 0.0 bits

VI. ANALYSIS

The results presented for both text and audio show how Huff-
man coding and Arithmetic coding works and its performance.
Looking at the text dataset, the Arithmetic coding is compressed
with only 10 bits, while Huffman coding has compressed the
data to 17 bits, hence it is clear that Arithmetic coding is much
more efficient in minimizing data size through use of fewer
bits to represent the same data. The efficiency of both methods
is estimated to be equal to 1.2783 bits/symbol, thus, both
methods provide the same amount of information per symbol.
Nevertheless, Huffman coding has 0.1384 bits of redundancy,

which speaks to the fact that there is some inefficiency to be
found in Huffman’s encoding, while Arithmetic coding has
none, or 0.0 bits, meaning it is true to form and uses all of
the bits without any extra or spare. This has clearly shown that
Arithmetic coding has a better compression ratio for the text
dataset than any of the two mentioned methods.

The encoding techniques show that, for the audio dataset,
both techniques have an entropy of 14.37 bits per symbol
which powerfully suggest that they encode the same amount of
information. Comparing with the Huffman coding and Arith-
metic coding, this is how the average code length looks like,
Average code length = 14.40 bits symbol for Huffman coding
and slight better with 14.37 bits symbol for Arithmetic coding.
As indicated regarding the compression ratio, the Huffman
coding has a value of 1.14, which is slightly higher than that
recorded in Arithmetic coding of 1.11. Huffman coding may be
even more efficient in this sense, reminding that this method
is generally thought to yield better results in reducing the size
of files. Moreover, analysis based on the redundancy metric
shows that redundancy of Huffman coding is 0.03 bits while
redundancy of Arithmetic coding is 0.00, which suggest the
efficiency of Arithmetic coding.

Taken together, lessons from both datasets underscore the
merits and demerits of each form of coding. Based on the
comparison of the compressed text-dataset results, Arithmetic
coding seems to require lesser bits to compress and has less
redundancy than Huffman coding method to be preferred for
data compression. Analyzing the results of the audio dataset it
is possible to see that although both methods are quite similar
by entropy and redundancy metrics, Huffman coding is slightly
better by the rate of compression ratio. But Arithmetic coding
is superior in average code length and has no matter of fact
zero redundancy. This implies that although Huffman coding
can work, especially for Huffman coding audio data, Arithmetic
coding often outperforms other methods, especially if reducing
data size and improving efficiency is tenable. The decision of
which method has to be used has to take into account properties
and additional need of the dataset to be compressed.

VII. CONCLUSION

Altogether, the analysis of Huffman coding and Arithmetic
coding enables understanding of the possible directions in data
compression development. In realisation of the different data
set scenarios, arithmetic coding appears to offer the shortest
length of the compressed data set with the least redundant
and as such is the better data compression model. However,
as clearly seen, these two methods suggest the same entropy,
and the average code length and redundancy make Arithmetic
coding more beneficial.

For recent coded entropy in audio dataset, both techniques
have approximately equal entropy, but the compression ratio
was found little higher in case of Huffman coding than that
of Arithmetic coding. However Arithmetic coding has slightly
lower mean freedom ratio and zero redundancy to back up its
efficiency.

So, both Huffman coding and Arithmetic coding are ways
of data compression though depending with the nature and
needs of a given data set, Huffman or Arithmetic coding should
be preferred. Arithmetic coding is more appropriate in most
cases when the size of the storage file and the efficiency of the
encoding are significant; Huffman is beneficial when the com-
pression ratio is essential, for example, in the case of audio data.
Subsequent studies may extend the presented approach toward

Huffman Coding
Arithmetic Coding

V
al

ue
s

International Journal Of Educational Research 128 (2024)

PAGE NO : 46

novel datasets and additional practical scenarios to determine
specific optimal methods of lossless data compression.

REFERENCES

[1] R. Weizheng, W. Haobo, X. Lianming, and C. Yansong, “Research on a
quasi-lossless compression algorithm based on huffman coding,” in Pro-
ceedings 2011 International Conference on Transportation, Mechanical,
and Electrical Engineering (TMEE), pp. 1729–1732, Dec 2011.

[2] L. Barua, P. K. Dhar, L. Alam, and I. Echizen, “Bangla text compression
based on modified lempel-ziv-welch algorithm,” in 2017 International
Conference on Electrical, Computer and Communication Engineering
(ECCE), pp. 855–859, Feb 2017.

[3] S. Bhattacharjee, S. K. Choudhury, S. Das, and A. Pramanik, “Dpcm block-
based compressed sensing with frequency domain filtering and lempel-ziv-
welch compression,” in 2015 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), pp. 1244–1249,
Aug 2015.

[4] A. Birajdar, H. Agarwal, M. Bolia, and V. Gupte, “Image compression
using run length encoding and its optimisation,” in 2019 Global Conference
for Advancement in Technology (GCAT), pp. 1–6, Oct 2019.

[5] H.-A. Pham, V.-H. Bui, and A.-V. Dinh-Duc, “An adaptive huffman
decoding algorithm for mp3 decoder,” in 2010 Fifth IEEE International
Symposium on Electronic Design, Test Applications, pp. 153–157, Jan
2010.

[6] C.-W. Huang, J. J. Thiagarajan, A. Spanias, and C. Pattichis, “A java-
dsp interface for analysis of the mp3 algorithm,” in 2011 Digital Signal
Processing and Signal Processing Education Meeting (DSP/SPE), pp. 168–
173, Jan 2011.

[7] P. Mbewe and S. D. Asare, “Analysis and comparison of adaptive huffman
coding and arithmetic coding algorithms,” in 2017 13th International Con-
ference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), pp. 178–185, July 2017.

[8] S. P. Venkatesan, S. Srividhya, N. Saikumar, and G. Manikandan, “Gen-
erating strong keys using modified huffman tree approach,” in 2016
International Conference on Circuit, Power and Computing Technologies
(ICCPCT), pp. 1–4, March 2016.

[9] R. Arshad, A. Saleem, and D. Khan, “Performance comparison of huffman
coding and double huffman coding,” in 2016 Sixth International Confer-
ence on Innovative Computing Technology (INTECH), pp. 361–364, Aug
2016.

International Journal Of Educational Research 128 (2024)

PAGE NO : 47

