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ABSTRACT 
The digitization and increased utilization of blockchain in the healthcare industry emphasize 
numerous benefits however, the vast volume of medical data, diagnostic imaging, and 
monitoring of patients raised significant concerns. The enormous collection and storage of 
critical information in the data system rises the exposure to unauthorized access, leakage of 
data, and insecurity. To overcome these issues, this research presents a permissioned 
blockchain-based encryption mechanism called the Parallel Triple Data Encryption Standard 
(P3DES) to enhance privacy through parallel processing of data blocks. The strong security and 
simultaneous processing led to reduce the encryption and decryption times, ensuring increased 
protection against cryptographic attacks. The Hyperledger Fabric introduces proof of storage in 
the blockchain network that enhances privacy and confidentiality, ensuring that only authorized 
users can access and validate the data. In addition, the Hybrid Pooling-based Modified Deep 
Convolutional Neural Network (HP-MDCNN) is incorporated to detect the presence of 
abnormal conditions in patients through health data to ensure timely decisions in order to take 
faster treatments. The results when experimented on the Heart Attack Analysis & Prediction 
Dataset for the P3DES showcased superiority with gaining 2.79s of encryption time, 2.19s of 
decryption time,0.69 of genuine user rate, and 9.90s of responsiveness. Similarly, for detecting 
abnormalities, the HP-MDCNN achieved 97.43% accuracy, 97.45% sensitivity, and 97.37% 
specificity, respectively. 

 
Keywords: Health data,Encryption,Hyperledger Fabric,Cloud Storage,Abnormal detectionDeep 
learning. 

 

I. INTRODUCTION 

In today's era, the healthcare industry finds itself on the brink of a significant transformation 
as the Internet of Things (IoT) revolutionizes the way we gather and exchange data. The 
integration of IoT devices into healthcare has opened up unprecedented opportunities for 
monitoring patients' well-being, managing chronic conditions, and optimizing healthcare 
delivery. However, amid this data-driven evolution, a crucial concern has emerged: the 
security and privacy of sensitive medical information. Addressing this challenge head-on, a 
decentralized healthcare blockchain tailored for IoT applications emerges as a promising 
solution with the potential to reshape the future of healthcare. Healthcare encompasses a wide 
range of services, spanning from intensive care clinics and emergency care centers to 
rehabilitation facilities and specialized outpatient services [13]. Healthcare systems provide 
essential resources to ensure a safe environment for patients, emphasizing disease prevention, 
control, and overall wellness maintenance [14]. Health data management aids healthcare 
professionals in incorporating and interpreting medical data to enhance patient care and make 
informed decisions that elevate the quality of healthcare while safeguarding data 
confidentiality and privacy. Health records serve as repositories of valuable and confidential 
patient information. The Internet of Medical Things (IoMT) represents an extension of IoT, 
specializing in the collection and processing of data for medical and health-related purposes 
[15]. Patient devices connected to IoT enable secure living, encompassing devices such as 
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wired scales and portable heart monitors. The aggregation of healthcare data holds immense 
potential, enabling the creation of holistic patient profiles, personalized treatment plans, 
advancements in medical procedures, strengthened doctor-patient relationships, and 
ultimately, improved healthcare outcomes [11]. 
In recent times, several scholars have put forth the idea of integrating Blockchain (BC) 
technology into healthcare systems. BC is essentially a cryptographically secured, unalterable, 
and time-stamped public ledger designed for the distributed storage and sharing of data 
through peer-to-peer communication. Within a BC network, numerous nodes, which are 
essentially computing machines, are responsible for validating each requested transaction and 
maintaining records of the verified transactions. Extensive research has confirmed that BC 
offers a robust solution for security, efficiency, and transparency in various data exchange 
scenarios [17]. Given its exceptional qualities, BC presents a promising avenue for data 
exchange and storage in both IoT (Internet of Things) and healthcare systems. Its 
decentralized nature eliminates the need for patients and hospital management systems to 
place trust in third parties or centralized data storage authorities, addressing concerns related 
to single points of failure or attacks. BC's immutability and irreversibility features guarantee 
that patients' data remains intact and free from malicious tampering [16].  
This research strives to improve the privacy of medical data through advanced encryption 
techniques along with employing modified deeplearning techniques to detect and inform 
abnormal conditions of health to takesuitable decisions. The decentralized structure of 
Hyperledger Fabric provides immutability and secure storage of data. The HP-MDCNN 
makes use of medical data to identify and inform the abnormalities. Moreover, the data is 
encrypted through P3DES to enhance the integrity, confidentiality, and security of the data. 
Finally, the data is stored on the Inter-Planetary File System (IPFS) for fast, and reliable 
accessibility. The primary contributions of the research are summarized as follows.   
Parallel Triple Data Encryption Standard (P3DES): Parallel Triple DES built upon the 
traditional Triple DES processes the data encryption and decryption simultaneously in 
parallel. This parallel processing leads to advanced encryption and fastens the processing time 
of the system. P3DES improves the performance by incorporating the core operations of 
3DES through encrypting data with three different keys ensuring data integrity and a high 
level of security. 
Hybrid Pooling-based Modified Deep CNN (HP-MDCNN):The HP-MDCNN leverages the 
strengths of both max and average pooling to capture the subtle features from the complex 
data, leading to provide better generalization performance. Moreover, the fractional calculus 
in the HP-MDCNN minimizes overfitting with long-range dependence and enables the model 
to detect abnormalities and inform the authority to take timely decisions. 

 
2. LITERATURE REVIEW 

Patil, S.M. et al. [1] presented a privacy preservation model based on the blockchain (BPPF) 
to overcome the challenges of vulnerabilities in cyber systems. This approach with the 
combination of an elliptic curve algorithm with a ring-based signature provides transparency, 
flexibility, and confidentiality during the situations of cyber-threats. The security mechanisms 
can result in delayedperformance due to the vast range of working cryptographic techniques. 
The approach attained a minimized delay of 27s with a blocktime of 2ms. 

Lodha, L. et al. [2] designed a security approach integrating the Internet of Medical Things 
(IoMT) with blockchain (BC-IoMT-SS) to secure medical data and enhance privacy 
mechanisms. The integration of both techniques led to the effective management of the 
healthcare data of patients. The outcomes after the simulation process demonstrate a 94% 
precision ratio which is longer in comparison with other approaches. Though, the larger 
percentage of outcomes, the model faces scalability issues with limited storage space. 
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Liu, J. et al. [3] developed an encryption standard that uses mechanisms like inner product 
search along with multi-keyword search (MK-IPSE) to secure private data with advanced 
encryption of electronic medical records (EMRs). The federated blockchain with searchable 
encryption provides resistance to attacks and improved performance. The issues inherited are 
the scalable and complexities that arise due to the combination of blockchain systems. Despite 
the issue, the framework showed the required performance in power and storage. 

Hu, F. et al. [4] designed an innovative approach called the FL-HMChain that collaborates 
healthcare and medical data with federated learning (FL). FL-HMChain incorporates the 
master node as consensus and CNN for validating performance. With an average rate of 4.7% 
enhancement on Area Under Curve (AUC) over CNN, the model effectively minimizes the 
leakage of sensitive data. Moreover, the model lacks reliable predictions when applied rather 
than pathological images.  

Alharbi, S.H. et al. [5] introduced IoT IoT-based remote healthcare monitoring system (IoT-
RHM) to enhance the level of security mechanism of patient data through a smart contracts 
technique, that tamper-proofs the data thereby elevating the integrity and privacy. The 
framework showcases a 97.55% integrity ratio on the evaluation of performance. However, 
the potential limitations like enlarged resources and heavy consumption of energy remain a 
constraint. 

The approach by Masood, I. et al. [6] involves access-control mechanisms and blockchain 
integration termed the (BBACM) framework for the management of personal health 
information (PHI) and physiological parameters of patients (PPPs). The framework configures 
it as a promising solution for improving the challenges that are prevalent in the context of 
body sensors and cloud storage systems. However, the framework is not designed 
specificallyfor emergency management systems which reduces the ongoing trends in 
healthcare systems. 

Izhar, M. et al. [7] introduced a health data management system that includes distributed 
ledger technology (DLT), along with edge computing. Encryption mechanisms like elliptic 
curves and edge nodes are integrated to improve the privacy and integrity of healthcare data in 
the monitoring systems. It also includes machinelearning (ML) methods for the detection of 
threats. With an accuracy of 99.77%, the model showcases its superiority, yet the challenge of 
computational overhead is acquired with the utilization of multiple techniques. 

The framework introduced by Rastogi, P. et al. [8] enhances the data security of healthcare 
data through encryption mechanisms like Diffie Hellman Galois–Elliptic-curve cryptography 
(DHG-ECC), where specific features are optimized by Pearson Correlation Coefficient based 
Sand Cat Optimization Algorithm (PCC-SCOA). These mechanisms include the IoT-based 
medical data and encrypts efficiently utilizing the algorithms which replicates prolonged 
accuracy and security. However, the approach attains a security rate of 96.12%, but the load 
balancing and challenges of edge networks remain a major issue. 

2.1 LIMITATIONS OF EXISTING SYSTEM 

 The integration of advanced standards of encryption methods to balance the needs of data 
privacy of patients to enlarge the posture of privacy mechanisms remains a challenging task 
[1]. Encouraging healthcare providers, IoT device manufacturers, and patients to adopt and 
understand the benefits of a decentralized blockchain solution results a challenge, as it 
requires a change in mindset and established practices [3]. Optimizing the resources and 
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consumption of energy along with the delicate consensus mechanisms is lacking peculiarly by 
the IoT-RHM [5]. The BBACM [6] failed to involve the management of emergency systems. 
Additionally, the diverse range of scenarios of healthcare poses a significant challenge for 
expansion. The DHG-ECC [8] suffered from load-balancing strategies and frequent network 
issues that predominantly disrupt the system and can lead to data loss [8]. 

2.2 PROBLEM STATEMENT 

The rapid growth of healthcare sector with advanced IoT and blockchain system possesses a 
major boon in research industry, however securing and managing the sensitive data of patients 
turned as one of the prime challenges. Therefore, to ensure integrity, privacy, and also 
authenticity for timely and accurate decisions in healthcare, a decentralized blockchain-based 
healthcare system that integrates an advanced Deep CNN for improved data security is 
designed in this research.   

2.3 OBJECTIVES 

To create a decentralized blockchain system for healthcare applications for data security and 
privacy. 

To introduce data verification mechanisms to ensure secure storage and integrity of data. 

To improve the model's performance using different techniques, ensuring accurate health-
related decisions. 

Evaluate the model’s performance using metrics such as accuracy, sensitivity,specificity, 
Genuine User Rate (GUR), and responsiveness to show its efficiency 

3. PROPOSED SYSTEM  

The emerging landscape of IoT in the healthcare sector faces more issues in securing the 
patient secret information and leads to the security vulnerabilities and unauthorized access. 
Apart from these complications, the scalability of these systems has become a major issue 
since dealing with large volumes of medical data that often demands enormous processing 
capabilities and infrastructure. The research aims to encompass MDCNN architecture along 
with blockchain distributed security to solve the drawbacks relating to data privacy and 
restrictions on operational performance while enhancing interpretability. In the initial stage, 
the patient medical information is collected and stored by the medical authority. The 
organization assigns a specific identifier to the patient as well as the doctor such that the 
identifier is being generated based on patient details. The authority records the data into the 
database, which runs on the cloud-based blockchain infrastructure. When the authority or the 
doctor wants to access the data, the authentication system verifies the authenticity of the user 
through authentication mechanism. The Hyperledger Fabric-based blockchain serves as a 
powerful tool, especially in the context of enterprise, where the peers execute and validate the 
transactions from different blocks and the subsets of them called the endorsing peers execute 
the transactions.The pre-trained model checks for the abnormalities related to health 
conditions and warns the particular authority about the conditions, for timely treatments and 
decisions. The encrypted data is securely stored on the IPFS, which is an advanced storage 
system that allows users to ensure secured transmission and accessibility. The general 
workflow of the system is shown in Figure 1.  
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Figure 1. System Model of Block-chain based Healthcare System 

4. METHODOLOGY 

4.1 BLOCKCHAIN ENABLED HYBRID POOLING-BASED MODIFIED DEEP 
CONVOLUTIONAL NEURAL NETWORK FOR HEALTHCARE MONITORING 
SYSTEM 
  
Centralized systems used in healthcare systems for storing health data are distracted by the 
challenges related to data integrity and authentication.To overcome this, blockchain-based 
approaches are employed however the systems address the concerns but face difficultyin 
finding a balance between security, performance, and accessibility. The research designs a 
priority of establishing a blockchain-based privacy-preserving healthcare system by involving 
HP-MDCNN along with P3DES to resist the demerits related to data privacy and to take 
timely decisions. Initially, the organization data like the patient data and pathologist data are 
gathered. These data are generated through personal identifications and stored on the 
organization’s database which uses the Hyperledger Fabric blockchain network. The network 
serves as the decentralized architecture that functions through a network of nodescalled the 
ledgers and provides a higher degree of security.The patient data involves the patient’s name, 
password, ID, the stored blockchain address, and the private key generated at the time of  
storage. For secure storage and to maintain confidentiality of these data, the 
patient’sinformation is stored using the signature generated by the Elliptic Curve Digital 
Signature Algorithm (ECDSA). This signature is further utilized for the accessibility of the 
specific patient’s details by the medical authority. While the owner or the doctor who wants to 
access the medical datauses the patient’s name, password, ID, and the generated signature 
(hash value). The data stored on the Hyperledger Fabric is forwarded to the HP-MDCNN 
before encryption and storage on cloud servers. The HP-MDCNN, uses hybrid pooling 
operations and also includes fractional calculus theory into the model to minimize the risk of 
overfitting and produce more generalized results. The pre-trained model informs the medical 
authority if the data reports abnormalities in health data and routesthe way for doctors to take 
timely decisions for the worse conditions. After this stage the data is encrypted through 
P3DES, which operates on triple layersof encryption, usingthree different keys. This 
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algorithm securely stores the data making it suitable for healthcare applications where data is 
enormous. Finally, the encrypted data is secured on the IPFS which stores files and efficiently 
delivers data. For the accessibility of data, the process is reversed by conversely performing 
the operations.   

 

Figure 2. Block-diagram representation of model 

 4.2 ECDSA-BASED SIGNATURE GENERATION AND VERIFICATION 

A digital signature is a mechanism used to verify the integrity and authenticity of digital data. 
The ECDSA algorithm is utilized as the scheme to generate the digital signature. It is an 
asymmetric cryptographic system that involves the utilization of public keys and private keys. 
The public key can be shared with the patients while the private key remains secret at the 
authority end. The ECDSA algorithm [18] functions on the elliptic curve represented as B that 

is defined on the path fN , and G is the point with a prime order m in  fB N , where f denotes 

the prime number. For the patient ep , a random number i in the interval  1, 1m  is analyzed for 

the generation of the public and private key, and O i G   is computed, where  O  denotes the 

public key and i denotes private key of the patient ep . 

Signature generation: To digitally sign the message ec , of the patient, ep the parameters are 

considered. The following steps are performed for the generation of signature. 

(i)Random number U is initialized along the interval  1, 1m  . 

(ii) Calculate
1 1

,UG n l and 
1e

mod ma n , where 1 1,n l are the integers between the 0 and 1f  . The 

step is reverted to (i) if the value of ea is 0. 

(iii)Calculate 1U mod m . 

(iv) Calculate   1

e e e

mod mb U H c ia  , where H denotes hashed value. The step is reverted to (i) 

if the value of eb is zero. 

(v) The required digital signature ,e ea b  is generated for the message ec . 

Signature verification: The generated signature is verified whenever the medical data needs 
to be accessed. The following steps show the verification process using ECDSA. 
(i)The integers  ,e ea b  are verified whether in the  1, 1m  interval or not. 

(ii) Calculate, 1mod mV U  and  eH c  

(iii) Calculate  1 e mod mj H c V and 2 e mj a V mod  

(iv) Calculate  1 2 0 0,j G j O n l  and 0k mn mod  

(v)Approve the signature when ek a  
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4.3 HYPERLEDGER FABRIC BLOCKCHAIN NETWORK 
After the authentication of signatures, the data is forwarded to the cloud servers 

through Hyperledger fabric network. The Hyperledger Fabric [3] is a permissioned modular 
blockchain network that operates on smart contracts called the “chain code”. Generally, the 
network contains the following components clients, Certificate Authority (CA), peers, and 
ordering nodes. The clients are the users who submit the proposals for the execution of 
transactions. Peers execute the chaincodesand validate the transaction proposals, and maintain 
the ledgers of the blockchain. Every peer is not responsible for executing transactions, rather 
the endorsing peers who are the subset of the majority peers, execute the proposals. The CA is 
an administrator who issues public, digital, and private certificates and also verifies the 
identities of the peers when joining the network.Ordering nodes form the order for all the 
transactions in the network. The workflow of the Hyperledger Fabric in the context of storing 
patient data can be elaborated as follows. 

Transactioncreation: The doctor is a participant in the network who has a digital certificate 
from the CA requests for the transaction. The CA after validating, transfers the proposal of the 
transaction to the peers. 
Transaction Endorsement: The peers execute the transactions, by checking the authenticity 
and deliver a message as approved or unapproved, that is forwarded to the client. 
Submit to Ordering nodes: The outcome from the endorsement is forwarded to the ordering 
service. The ordering nodes or the peers responsible for ordering include the transaction 
details into the particular block and forward them to the peer nodes available in the network. 
Updating ledger: With the receiving of the block, the peer nodes of the specific organization 
update their local ledgers with the received block to commit the new transactions. Figure 4. 
illustrates the storage service offered by the Hyperledger fabric-based blockchain network. 
Proof of Storage:Peers are also responsible for hosting the ledgers and chaincodes, due to 
blockchain networks generally need consistent copies of data and smart contracts. These 
smart contracts run on specific mechanisms, where the concept of data storage is attained 
through the ledger's immutability and using hashes of the medical data. The Hyperledger 
Fabric [20]is decentralized and stores records that are immutable and the use of storing the 
actual data is stored separately from the blockchain ledger while the ledger stores only the 
hashes of the actual data. These two principles known as the Proof of Storage ensure data 
integrity by verifying storage. 

 

4.4 HYBRID POOLING ENABLED MODIFIED DEEP CNN 

The data stored in the blockchainis made available to the healthcare monitoring unit. The unit 
is trainedusing the model to detect the abnormalities of health conditions through medical 
data, the HP-MDCNN employs datasets [30] and [31]. The dataset can be mathematically 
represented as, 

 , ,1 ,1u vE x u P v Q          

where E denotes the datasets, 
,u vx denotes the thv attribute for the thu sample, P implies the total 

number of samples,and Q implies the total attributes present in the thu sample.For each sample, 

the output labels are assigned and can be denoted as  0,1uy  . 

0,

1,
u

Normal
y

Abnormal


 


       

The following data samples are forwarded for cleaning, normalizing, and removing unwanted 
values. Then, the data are transferred to the proposed HP-MDCNN to recognize the inherent 
patterns. The data with dimension  13 1 1N     is processed with the proposed modelthat extract 

complicated and high-level features. The model employs multiple convolutional layers that 
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produce a hierarchical level of feature extraction. The ReLU is used as activation to include 
non-linearity, tackle vanishing gradients, and fasten the process. After processing through 
these layers, hybrid pooling is used which involves incorporating mixed pooling integrating 
the max pooling and average pooling that indulges priority-based features and smoothing 
process to preserve the essential details. This hybrid pooling approach minimizes the 
overfitting issues with a reduction of dimension  7 1 32N    . Similarly, the process is repeated 

for four more cycles to efficiently train and improve the performance. During the first cycle, 
the dimension is reduced to  4 1 64N    , then in the second cycle to  2 1 128N    , and 

subsequent cycles as  2 1 64N     ,and  1 1 32N    . Additionally, the fractional calculus theory 

[21] is introduced in the model that is applied before the flattened layer and dense layers to 
enhance learning capacity. Fractional calculus theory is an extended version of ordinary 
calculus that involves differentiation and integration of functions to fractional orders. The 
Riemann-Liouville (RL) based fractional derivative is employed for determining the 
fractional order using the repetition of integration and differentiation. Consider as the 
analyticfunction  h x , inthe domain  0, x , that is divided into equal grids for the step size of e

.The RL fractional derivative of order gamma  of a function  h x  is represented as, 

 
 

   
1

0

1
,

x

C h x x r h r drx r




 
 
    

where    denotes the gamma function,  h r denotes the function to be differentiated, and  ,x r

denotes the real variables that determine the input data x along the time r .The generalized 
form of integration repeated along the interval  0, x .The function   acts as a normalizing 

entity, which generalizes the factorial function to fractional orders. The fractional derivatives 
include the memory effect which means that the state depends not only on the present but also 
analyses the entire history. This mechanism allows the HP-MDCNN to capture intricate 
details of irregular health data. The MDCNN produces the output with fractional derivatives 
as 

 Ad W C x Y    

The HP-MDCNN produces an output of  2N  as normal and abnormal and the model notifies 

the doctor by alerts to provide insights for immediate actions. Moreover, the model’s error 
rate is minimized using the loss function as described in equation (6). The learning rates are 
tuned effectively using the Adam optimizer to improve response times of alerts through 
momentum and adaptive learning of complex patterns of medical data.   
 

4.5 PARALLEL TRIPLE DES FOR ENCRYPTION AND DECRYPTION 

P3DES is an extensive encryption standard that is built upon the standard DES algorithm 
executing parallelly three times across each block of data to enhance the security. Due to the 
small key size of 56 bits, the DES[22] is vulnerable to brute-force attacks. To overcome this, 
the P3DES was introduced that operates 3DES executions simultaneously using the same 
plaintext and different keys to generate the cipher text. The cipher text obtained after 
concatenationis of 192-bit ciphertext form, which makes itimpossible for the attackers to 
access the data. Consider a plaintext of 64bits tp as inputwhich executes on triple DES 

operations using keys 1 2,g g and 3g of 64bits.  

   11
,te

c En p g  

   22
,te

c En p g  

   33
,te

c En p g  

       1 2 3t e e e e
c c c c 

 
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where,  1 e
c ,  2 e

c ,  3 e
c denotes the three cipher text for the the patient.  t e

c denotes the generated 

cipher text after concatenation which is 192 bits long and En denotes the encryption process. 
The encrypted output is thus stored in the IPFS cloud storage. Similarly, for decryption, the 
process is reversed. The same keys are used and decrypted each block in parallel.  

  1 11
,t e

p De c g  

  2 22
,t e

p De c g  

  3 33
,t e

p De c g  

where De denotes the decryption operation. Since the same keys are used for decryption, the 
output should match to produce the plaintext. 

1 2 3t t t tp p p p    

The attained plaintext also serves as the notation for the integrity check to determine whether 
the data is similar to what has been stored.The DES involves performing similar operations to 
encrypt and decrypt to enhance the security and reduce the tampering of data. The general 
operations performed for encryption and decryption in the standalone DES can be described 
as follows. 

 
4.5.1 CORE OPERATIONS OF P3DES 

As the P3DES is built upon the functions of DES [23]algorithm, the core operations are 
similar as it works on the Fiestel structure undertaking 16 rounds with different keys used for 
every round. DES performs subsequent functions for each round to encrypt the data. DES 
uses a fixed 64-bit length of plaintext and key as input. The core operations of the DES are 
described below. 

a) Initial permutation:The first step in DES is the initial permutation, where the plaintext is 
rearranged using a permutation table. 
 
b) 16 rounds of Fiestel function:The DES algorithm performs a total of 16 rounds to 
generate the cipher text.  These rounds operate on the Fiestel structure that converts block 
ciphers into two halves as left half of 32 bits and the right half of 32 bits. 
i) Key Transformation:The transformation produces a set of different keys using the 
provided 64-bit key. For every round 8bits are discarded and 48bits are used, thus for every 
56-bit key a different 48-bit subkey is generated by transforming the circular shift operations. 
ii) Expansion/permutation:The right half of 32 bits is expanded to 48 bits through an 
expansion table. It increases the dependency of the key because of interchanging the bits. The 
right-half key is XORed with the round key. 
iii) Substitution/Choice (S-box): The S-box permutation divides the 48 bits into 8 blocks 
each of 6 bits which utilizes substitution using S-box and further reducing it to 4 bits. The 32-
bit results create confusion and non-linearity through this operation. 
iv) Permutation:The 32-bit values are permuted according to the permutation table. 
v) XOR and Swap:The permuted output is XORed with the left half value acquired from the 
previous round. 

c) Final Permutation:After performing the above operations for 16 rounds, the left and right 
halves values are combined and the final permutation is applied using the inverse of the initial 
permutation table. The final bits are rearranged to generate the output as 64 bits. Figure 3. 
demonstrates the core operations carried out for one DES operation in the P3DES. 
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Figure 3. Core Operations of P3DES Encryption Algorithm 

 

4.5.2 ENCRYPTION PROCESS OF P3DES 

Generating Key:The three keys are generated using the key generator that creates unique 
keys. 

Initial Permutation:The plaintext of size 64-bit is allowed for the initial permutation 
operation. 

Encryption using three rounds:The plaintext is encrypted three times in parallel using the 
different keys to create layers of encryption. A single DES operation is applied three times in 
parallel. 

Final Permutation:After performing three levels of encryption, the final permutation is 
applied to generate the ciphertext of 192 bits. 

 

4.5.3 DECRYPTION PROCESS OF P3DES 

The decryption operation is performed using the same process in the reverse order, with 
feeding ciphertext and the same keys as input to generate the output as the plaintext of 64 
bits where each block producesthe outcome of plaintext which is similar to each other. 
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5. RESULTS AND DISCUSSION 

The following section delivers the outcomes of the HP-MDCNN and the P3DES 
demonstrating their performance. 

 

5.1 PERFORMANCE METRICS 

Accuracy: Measures the overall correctness of the classification model. 
 

R S

R S R S

Z Z
Accuracy

Z Z L L




  
 

 
Here ,R SZ Z denotes the correctly identified positive cases and ,R SL L  denotes the incorrectly 

identified positive and negative cases. 
Sensitivity: Determines the percent of identified positive cases by the model. 

 
R

R S

Z
Sensitivity

Z L



 

 
Specificity: Determines the percent of identified negative cases by the model. 

 
S

S R

Z
Specificity

Z L



 

Encryption Time: Total time required for the encryption algorithm to encrypt the data. 

Decryption Time: Total time required for the encryption algorithm to encrypt the data. 

Genuine User Rate: Determines the percentage of genuine users authenticated by the system. 

Responsiveness: The time taken by the system to process the requests. A lower value 
indicates the greater response of the system. 

 

5.2 COMPARATIVE DISCUSSION 

The emergent services in healthcare emphasize the need for advanced monitoring 
systems. However, traditional methods employed for the work faced enlightened limitations. 
The TinyML [4] performs well with the combination of ML models but is vulnerable to 
network attacks that limit its adaptability. The Ensem-HAR [25] delivers excellent results 
but the possible misclassification occurs between the human activities. CNN [26] model 
resulted in higher costs and an inability to handle huge data which is inherited in health 
organizations. The UNET [27] model detects the brain barriers effectively, but while 
interpretation, it lacks generalization and the implementation in the clinical setting remains a 
major challenge. Similarly, the models like CNN-LSTM [28], and 1D-CNN-BiLSTM [29] 
suffered from performance and scalability issues due to the limited availability of datasets. 
However, the MDCNN by incorporating mixed pooling increases the generalization 
capability along with the enhanced performance. The fractional calculus allows the model to 
learn complex features thereby providing valuable insights into the abnormal conditions of 
health and allowing the pathologists for early treatments. Table 1. illustrates the comparative 
discussion of the HP-MDCNN on both datasets. 
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Table 1. Comparative discussion table of the HP-DCNN 
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Table 2. demonstrates the comparative discussion table of the P3DES on comparing with 
existing methods. The secured storage and access of medical data are inhabited by factors like 
diminished privacy, vulnerabilities by attackers, and so on. Several block-chain-based systems 
were incorporated earlier to tackle these issues however the BC-IoMT-SS [2] implemented 
based on IoMT faces a challenge in the context of balancing the encryption standards that 
leads to reduced performance. Moreover, the MK-IPSE [3] lacks scalability due to the 
integration of different decentralized architectures. The BBACM [6] framework involves 
blockchain to improve its diversity against health data management but failed to address the 
emergency management services EEDAM [7] due to its combination of ML models improved 
the standardized healthcare management however, the substantial computational requirements 
remain a major constraint to be addressed. The DHGECC [8] employed diverse techniques 
that hindered the system with load alongside led to data loss. The P3DES with the 
combination of traditional 3DES efficiently handles these issues. P3DES encrypted data 
provides more security by generating prolonged ciphering and parallel execution of operations 
making it a robust security mechanism with less computational needs. 
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Table 2. Comparative discussion table of the P3DES 
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6. CONCLUSION 

The research proposes an encryption mechanism, P3DES to protect the privacy and effective 
accessibility of the health data. The P3DES inherits the benefits from 3DES and processes 
encryption in parallel, which minimizes time and faster responsiveness of the system. It also 
retains the strong core operations of the original 3DES, for encryption ensuring a high level of 
data security. Moreover, the HP-MDCNN is incorporated to determine the critical conditions 
from health data for early diagnosis. Hybrid pooling allows to capture of dominant and 
essential features of complex medical data leading to better generalization and enhanced 
performance. Moreover, the fractional calculus in the MDCNN introduces memory and long-
range dependency which helps in more precise identification of abnormalities.The HP-
MDCNN when tested on Heart Attack Analysis & Prediction Dataset, attained accuracy of 
97.43%, sensitivity of 97.45%, and specificity of 97.37% at 90% training percentage. For the 
encryption mechanisms, the P3DES showed impressive results by achieving an encryption 
time of 2.79s, decryption time of 2.19s, genuine user rate of 0.69, and responsiveness of 9.90s 
respectively. The future direction of research would concentrate on designing the hybrid 
optimization algorithm for key generation in encryption mechanism.  
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