

Real-Time Operating Systems

(RTOS): A Survey on Use Cases

and Challenges
Sukhada Harsulkar, Rutuja Darade, Riya Dargude, Nayan Loya, Minal

Deshmukh.
Department of Electronics and Telecommunication Engineering

Vishwakarma Institute of Information Technology Pune, India
sukhada.22210857@viit.ac.in

minal.deshmukh@viit.ac.in

rutuja.22210021@viit.ac.in

riya.22211221@viit.ac.in

nayankumar.22211594@viit.ac.in

Abstract— [1] Real-time operating systems (RTOS) are

the fundamental of today’s embedded systems that provide

precise control and time-sensitive characteristics in the

field of different applications. This paper explicates the

various uses of RTOS such as using TinyOS in wireless

sensor networks for gathering smart data in an energy

efficient way and the use of tasking methods for

transmitting data safely and efficiently. Smart assistant

devices for the visually impaired present an example of

RTOS in combination with malleable human-interface

technologies, while RTOS-supported robotics systems

demonstrate the progress made in realtime kinematic

control and multithreaded implementation. Other

introductions are: RTOS Extracter for performing

automated system analysis; protected memory domain

concepts aiming at achieving fault isolation; and/or

application-targeted RTOS architectures addressing strict

safety sensitivity levels. The paper also discusses dynamic

scheduling for the event-driven industrial automation

system and the actual IEC 60870-5-103 standards for

industrial control systems communication, providing

accurate compatible integration.

Tackling major issues, this work discusses the best software

architecture for cyber-physical systems and round-robin

CPU scheduling with dynamic time quantum modification

for better throughput and latency improvement. This multi-

faceted problem involves guaranteeing control flow

integrity against runtime threats and developing fine-

grained lightweight monitoring mechanisms for

performance enhancement as central tasks to increase

RTOS dependability.

An application of real-time GPS with gyro compassing

employing cascaded EKF is coupled with the FreeRTOS

represents worth mentioning fusion of location and

orientation. Moreover, RT-ATDE.

Keywords: Operating systems, especially Real-Time

Operating Systems (RTOS), embedded systems, Tiny Real-

Time Operating Systems, sensor networks, task-based

techniques, conjugate adaptive human-computer interface,

RTOS based robotic systems, dynamic scheduling

techniques, security-sensitive systems, IEC 60870-5-103,

memory protection schemes, cyber-physical systems,

control flow integrity, performance measurement, Extended

Kalman Filters (EKFs), FreeRTOS, GPS real-time

integration.

I. INTRODUCTION

RTOS is essentially in the core of embedded systems as they

supply successful temporal scheduling for great

performance rate as per the taste of present days application.

As the features of embedded technologies advance, there

had been a growing need for RTOSs that can deliver high-

performance, low-latency and safety-critical applications.

RTOS facilitates determinism by such attributes as,

preemptive multitasking, priority scheduling, and real-time

clock control making it mandatory where industrial

automation, robotics, healthcare, and IoT operations are

involved.

In this paper, the broad functionality of RTOS in different

advanced use is discussed. As an example, TinyOS, a

lightweight event driven RTOS used extensively in WSNs,

has shown enhanced energy management and security for

data transmission. These capabilities are expanded on by

International Journal Of Educational Research 128 (2024)

PAGE NO : 48

mailto:sukhada.22210857@viit.ac.in
mailto:rutuja.22210021@viit.ac.in
mailto:riya.22211221@viit.ac.in
mailto:nayankumar.22211594@viit.ac.in

task-based approach which fosters scalable and more robust

communication frameworks. RTOS also continues to have

a revolutionary role in human oriented technologies

including smart helping gadgets to the blind, using real time

adaptability for user interface interaction. Dynamic

scheduling increases capability in event-responsive

applications in industrial environments more so DyROS and

the robotic systems based on RTOS demonstrate

improvements in multi-task control and sensors.

Additionally, the RTOS frameworks designed for the safety-

critical applications include its importance to aerospace,

automotive, and medical systems that guarantee the

feature’s resilience and functionality.

However, RTOS is not immune to some major challenges

that require new approaches for their solution. These are the

software design for cyber-physical systems, improved CPU

scheduling algorithms with flexible time quantum and

proper control flow to avoid runtime problems. Subtle

performance monitoring procedures include

instrumentation that enables the acquisition of more refined

details concerning the efficiency of RTOS, for effective

performance assessment and tuning. Further, spline

interpolation with Kalman filters such as GPS navigation

and gyro compassing using cascaded EKFS with FreeRTOS

show how complicated real time systems are and how

significant the problem of optimal scheduling is. Last but

not least, practical tools such as RT-ATDE (Real-Time

Analysis and Testing Development Environment) can be

viewed as the means of transitioning from formal models

and bringing real-time constraints into validation [1].

II. BACKGROUND

A.3.1 FRAMEWORK: [2] The system of an RTOS serves

as the foundational engineering that empowers the

execution of planning and assignments inside strict timing

imperatives. Broadly two essential models characterize the

basic organizations of RTOS systems; library-based and

isolated executable models. The centre functionalities of

RTOS spin around assignment planning, memory

administrations and inter-task communication. Real-time

planning approaches like rate-monotonic or earliest-

deadline-first are commonly utilized to meet strict timing

prerequisites. Memory administration regularly

incorporates equipment highlights Memory Security Units

(MPUs) to accomplish special confinement, which is basic

in safety-critical spaces. Furthermore, inter-task

communication instruments such as message lines and

semaphores play a vital part in guaranteeing compelling

assignment coordination.

In safety-critical applications, RTOS must comply with

thorough industry benchmarks, such as IEC-61508 or DO-

178C. These systems coordinated security highlights like

blame resilience and comprehensive confirmation forms to

meet the rigid necessities of spaces like aviation, car and

mechanical robotization. By tending to these challenges,

the RTOS gives a strong establishment for real time

operations, guaranteeing unwavering quality and

effectiveness in basic frameworks.

B.3.2 ARCHITECTURE: The engineering of an RTOS

is planned to guarantee the convenient execution of errands

whereas overseeing framework assets proficiently. It is

ordinarily organized around key components such as the

bit, errand administration, memory administration, and

inter-task communication mechanisms. The bit serves as

the centre of the RTOS, overseeing assignment planning

and asset assignment. It underpins different planning

calculations, counting fixed-priority and energetic need

plans, such as Rate-Monotonic Planning (RMS) or Most

punctual Due date to begin with (EDF). These planning

approaches are basic in ensuring that time-sensitive

assignments meet their due dates beneath exacting

constraints. In RTOS-based frameworks, errands are

frequently organized as autonomous program units with

clearly characterized execution necessities. The

engineering bolsters synchronous and offbeat

communication between these errands, utilizing signalling

instruments like semaphores, message lines, and shared

memory. These highlights empower dependable

coordination in complex frameworks, such as mechanical

mechanization or therapeutic devices. The plan of RTOS

models moreover consolidates memory administration

methodologies custom fitted for the system's equipment

imperatives. Numerous RTOS stages utilize memory

security units (MPUs) to accomplish spatial confinement

between assignments. This approach not as it were

upgrades security by avoiding memory debasement but too

encourages secluded framework improvement by

permitting errands to work freely inside their distributed

memory spaces [2].

C. 3.3 ROLE OF THE RTOS: In real-time frameworks, the

working framework (OS) plays a basic part in guaranteeing

the deterministic execution of assignments whereas

overseeing framework assets successfully. The principal

objective of a real-time working framework (RTOS) is to

meet the timing and execution prerequisites of errands

inside particular limitations, which is fundamental for the

International Journal Of Educational Research 128 (2024)

PAGE NO : 49

usefulness and unwavering quality of implanted and safety-

critical applications.

The RTOS part acts as the central chief, capable for

planning errands concurring to real-time needs and

guaranteeing that high-priority errands are executed

without undue delay. To accomplish this, RTOS

employments pre-emptive or agreeable multitasking plans,

frequently complemented by calculations like Rate

Monotonic Planning (RMS) or Most punctual Due date to

begin with (EDF), which ensure schedulable beneath

particular conditions.

Memory administration in an RTOS guarantees spatial

segregation between errands to avoid memory debasement

and empower blame control. This is especially critical in

safety-critical applications where assignments of changing

criticality levels may coexist. Highlights such as memory

assurance units (MPUs) or memory administration units

(MMUs) are utilized to implement boundaries and improve

framework security.

 III. OPTIMIZING RTOSPERFORMANCE

A. Resource Management: Resource Management in

RTOS is a basic viewpoint of guaranteeing the

proficient and solid operation of real-time frameworks.

RTOS utilize synchronization components like

mutexes and semaphores to oversee asset sharing

among errands. This is basic in avoiding information

debasement and race conditions, which can

compromise the keenness of the system. In RTOS,

asset administration is regularly taken care of by the

part, which is mindful for overseeing framework assets

and giving administrations to applications. The bit

incorporates a scheduler, memory administration,

hinder taking care of, and assignment administration

components, all of which play a significant part in

asset management. [2]

B. Memory Management in RTOS:

Fixed Partitioning: Fixed Partitioning is a memory

administration strategy utilized in RTOS where the

accessible memory is partitioned into fixed-size

pieces. Each square is distributed to a particular errand

or handle, and the estimate of the square is decided at

compile time. This procedure guarantees proficient

memory allotment and deallocation, as the measure of

the memory piece is settled and known in progress.

The points of interest of Fixed Partitioning incorporate

effective memory assignment and deallocation,

unsurprising memory utilization, and moo overhead.

Be that as it may, the drawbacks incorporate

unbendable memory allotment and wastage of memory

if the designated piece is bigger than the required size.

[2]

1) Dynamic partitioning: Dynamic Partitioning is a

memory administration procedure utilized in

RTOS where the accessible memory is distributed

powerfully, based on the prerequisites of the

framework. The estimate of the memory piece is

decided at runtime, and the memory is

apportioned and deallocated as required. The

preferences of dynamic partitioning incorporate

adaptable memory allotment and proficient utilize

of memory. Be that as it may, the drawbacks

incorporate higher overhead due to energetic

assignment and deallocation, and potential for

memory fracture. [2]

2) Memory pooling: Memory Pooling is a memory

administration method utilized in Real-Time

Working Frameworks (RTOS) where a pool of

accessible memory is kept up, and when an errand

or prepare requires memory, it is designated from

the pool. This strategy diminishes memory

fracture and progresses framework execution by

minimizing the overhead of energetic memory

allotment and deallocation. The points of interest

of Memory Pooling incorporate decreased

memory fracture, progressed framework

execution, and proficient utilize of memory. Be

that as it may, the drawbacks incorporate higher

overhead due to pool administration, potential for

memory fatigue if the pool is not overseen

legitimately, and the require for cautious pool

measure estimation to dodge memory squander or

weariness. [2]

International Journal Of Educational Research 128 (2024)

PAGE NO : 50

Fig.2. Software Real Time Operating System (HW RTOS

verses SW RTOS). [3]

IV. CASE STUDY AND IMPLEMENTATION

4.1. This case study looks into a method through which

open-source Real-Time Operating Systems (RTOS) may be

transformed into application specific solutions appropriate

for environments where safety is paramount such as urban

air mobility and avionics. Safety-critical systems should

adhere to stringent requirements such as DO-178C in

aviation to ensure that even if faults occur, the resulting

effects are not catastrophic. The paper elaborates on the

challenges that non-commercial RTOS, use, are

disadvantageous as they often lack the requisite

certification artefacts and formalized development

processes for high assurance environments. The methods

employed in the study included assessment and

customization of RTOS candidates in line with some safety

critical application principles, such as static allocation of

memory, coding standards MISRA-C, and dependable fault

management. The authors conducted a particular study in

the context of an airline onboard maintenance system

which has to comply with DO-178C Development

Assurance Level D (DAL-D) and demonstrate the

approach. The emphasis is first put on exploring various

open-source RTOS alternatives while scrutinizing their

licensing and configuration features. After that, non-

negotiable constraints such as static resource allocation and

the complete suppression of conditional compiling

directives which can impact kernel security are

implemented on a chosen RTOS. Finally, the modified

RTOS and its certification artifacts are used in the

integration process.

Fig.2. An overview of the application-specific RTOS for

safety-critical systems methodology

RTOS Implementation: This is the case for implementing a

Real-Time Operating System as part of the safety-critical

development process; strict rules and procedures must be

adopted in order to guarantee the performance, safety, and

dependability of the system. RTOSs should support real-

time operations with consistent timing behavior and strong

fault-tolerant mechanisms especially in safety-critical

applications such as industrial control, automotive,

aerospace, and medical equipment. A detailed requirements

analysis is normally the initial step of development in

which the RTOS's performance and safety requirements are

defined. This is followed by selecting or designing an

RTOS that adheres to applicable industry standards like

ISO 26262, DO-178C, or IEC 61508. The RTOS then

becomes part of the system architecture such that it

supports all the essential safety-critical functionality

including priority-based preemption, deterministic

scheduling support, and support of inter-process

communications. For reducing the failure likelihood, safety

features like memory protection, error management, and

system health monitoring are integrated. Techniques

applied for testing include static analysis, dynamic

analysis, and formal verification, to mention just a few. The

real-time restrictions are thoroughly checked to ensure that

the system satisfies deadlines in all operational scenarios.

Another step in the process is creating full documentation

to back certification attempts, which may include audits

from regulatory bodies. RTOS updates and maintenance

should be performed with care, ensuring backward

compatibility and revalidation to preserve compliance.

Given that the RTOS implementation follows a systematic

and standards-compliant methodology, it guarantees

dependability and security required for mission-critical

applications in safety-critical systems.[4]

4.2 In this paper, one such use case has been described—

implementing a memory protection technique within a

tailored Real-Time Operating System intended for safety-

critical applications—the particular example here is aimed

at resource-constrained devices, as is the case in ARM

Cortex-M microcontrollers. The method promised here

satisfies the requirements of safety-critical because using a

Memory Protection Unit allows spatial isolation,

preventing defects inside one job or application from

interfering with others. In this use case, the RTOS runs on

an ARMv7-M member, the STM32H7 MCU. The system

is configured based on an XML approach where application

and task definitions exist as well as their associated

resources, such as interprocess communication facilities

and memory regions. Tasks within the same application

share a common memory space and can use shared-

memory communications. Communication between tasks

in different applications will be strictly enforced through

International Journal Of Educational Research 128 (2024)

PAGE NO : 51

message passing for isolation. To begin with, the existing

memory areas are defined statically in advance using

examination of aperformed applications, to avoid object

code conflicting with position independent module and

hardware restrictions. The configuration of the MPU is

handled by the RTOS kernel when switching tasks,

maintaining a level of protection over transformation

activities. This configuration takes into account memory

regions containing the code, global variables and the

opening stack as well as other aspects including cache

policy and access control for memory mapped peripherals.

The use case also demonstrates the system's flexibility

through examples covering tasks related to an IPERF

network performance server, network data handling, and

associated memory access and buffering regions. Such an

approach, by dealing with memory alignment, memory

optimization and hardware limitations, achieves memory

efficiency and enhanced fault containment with the safety

critical applications running on a limited hardware

resources. [5]

Fig.3 refered from paper Workflow for defining protected

memory-regions.[5]

RTOS Implementation: The paper provided explores the

use of an RTOS in a safety-critical environment with an

emphasis on memory protection and spatial isolation

policies, even when working with highly resource

constrained systems that only have rudimentary Memory

Protection Units (MPUs). The design and architecture of

the RTOS is aimed at real-time systems that are involved in

sensing and actuating processes, which is mostly in

automotive, aerospace and medical industries. Since these

microcontroller units (MCUs) do not usually come with

advanced MMUs, the thrust of the design depends on the

usage of the MPU to achieve spatial isolation of the

executing threads. This method divides the responsibilities

into different programs, and each program has its own

independent memory address space. Sharing of data within

the same program is done via shared memory. However,

there is no such provision for communications between

applications and such communications are always message

based. The RTOS kernel manages the MPU during

operation in a way that none of the tasks works on any other

memory address space apart from the designated ones,

which eliminates application crashing effects. In a similar

way, access to memory-mapped devices is also restricted to

the applications that are allowed to use that device. The

implementation procedure commences with the assessment

of the memory requirements of each individual application,

which consists of code, data, stacks, and other sections. In

this route a memory map is created to improve the memory

within the hardware limits which also considers the address

alignment. Memory protection regions are specified at this

stage which is also utilized by the RTOS kernel during

execution. The system achieves post-production memory

management adherence to the design constraints of safety-

critical systems. One of the critical aspects of the strategy

is that it is flexible and can be integrated into different

MCUs without extensive modifications. It also allows for

resource configurability making it appropriate for use in

applications that depend on pre-certified elements. In an

industrial case study involving ARMv7-M based MCUs the

strategy was implemented successfully proving its

efficiency in utilizing the memory and providing safety in

a constrained environment. [5]

Fig.4. Measure Characterization. [5]

4.3. The system mentioned in the above reference, Internet

of Farming Things and RTOS-based Robotic System for

Water Quality Monitoring and Fish Feeding in Freshwater

Aquaculture, is a strong example of how the practical

application of Real-Time Operating Systems makes them

answer numerous complex challenges in aquaculture. The

use case here discusses incorporating RTOS with IoT to

International Journal Of Educational Research 128 (2024)

PAGE NO : 52

monitor and manage water quality as well as fish-feeding

processes efficiently. In the proposed system, RTOS plays

a key role in coordinating various tasks of real-time data

acquisition, processing, and actuation in freshwater

aquaculture. The system comprises a robotic module

equipped with several sensors for monitoring key water

quality parameters, such as temperature, pH, turbidity, and

DO. These parameters are analyzed using a Water Quality

Suitability Index to ensure optimal conditions for fish

health and growth. This enables the RTOS to perform these

tasks in a round-robin manner and, therefore, ensures that

operations like monitoring and feeding are accurately and

promptly carried out. It operates independently, floating on

the top of water and covering pre-set areas and gathering

data, distributing feed and entails a cloud connected stage

for storage and visualization of all data with the capability

to monitor and regulate in real-time, using a mobile

application in a system that enables it for farmers to access

critical information remotely and make any feeding time or

quantity adjustment, feeding time, and quantity based on

real-time insights.

Key features include:

Sensor Integration and Control: RTOS ensures real-time

data collection from sensors measuring water quality

parameters, plus executes control algorithms for feeding

mechanisms.

Real-Time Feedback and Adaptation: The system

dynamically adjusts feeding schedules based on water

quality data and the behavior of the fish, thereby optimizing

feed utilization.

Energy Efficiency: A solar-powered module ensures

sustainable operation, with RTOS managing power

distribution and resource optimization.

Cloud-based Mobile App Integration: Data is processed

and stored in the cloud, enabling visualization and remote

control through user-friendly applications. This system is

an example of RTOS capability in efficiently handling

concurrent processes with high reliability and low latency.

However, it also presents some limitations, such as to

ensure robust connectivity in rural areas, calibration of

sensors, and handling possible hardware failures. The

significant limitation is reliance on reliable internet

availability for real-time monitoring and control, which

would be best addressed by the integration of edge

computing functionalities in future versions. Finally, the

IoT-enabled RTOS-based robotic system culminates all the

real-time decision-making, efficiency improvement, and

automation potential of the RTOS in aquaculture. This use

case would therefore align perfectly with your survey paper

on the broader theme by illustrating the practical

application and challenges of deploying RTOS in dynamic

environments.[6]

Fig.5.Example of development process for applications.

[6].

Performance evaluation: Real-time measurements of task

switching time, ISR handling time, and alarm service time

were carried out to evaluate the OSEK turbo system

performance. A worst-case execution time (WCET)

approach is studied in this paper, as it is crucial for ensuring

timely execution of tasks in stringent real-time conditions,

examples of which can be automotive systems. Findings:

Among other things, the study measured entry latency for

interrupts, the time required to activate a task, the timing

for switching from ISR to the task, and the time taken to

activate a task upon alarm arrival. These parameters

presented help in the computation of the WCET and overall

performance of the system. The results confirmed that the

system is capable of multitasking and meeting the time

constraints of completing high priority tasks. The

conclusion of this work accentuates the relevance of

employing RTOSs like OSEK for automotive ECUs which

require real-time task management. The study also

demonstrates how OSEK turbo provides a way of

managing tasks efficiently in complex automotive systems

through the analysis of task switching times and other

performance metrics. [6]

4.4. The paper, "Dynamic Scheduling for Event-Driven

Embedded Industrial Applications," focuses on the

challenges and advancements in optimizing real-time

operating systems (RTOS) for embedded industrial

applications with event-driven task models. This work

introduces a novel lightweight dynamic scheduler

integrated into FreeRTOS to improve schedulability while

reducing the overhead in timing and memory. This paper

provides an integration of a dynamic scheduling policy

suited for the nature of event-driven tasks with industrial

scenarios. Unlike regular periodic task scheduling, event-

International Journal Of Educational Research 128 (2024)

PAGE NO : 53

driven tasks are triggered in unpredictable external or

internal events. The authors implemented a dynamic

scheduler, specifically using the earliest deadline first

policy within FreeRTOS. Improved performance has been

demonstrated in such scenarios as smart home devices,

such as Nespresso coffee machines.

Key improvements include:

Reduced Deadline Misses: Event-driven dynamic

scheduling improved missed deadlines by up to 60% as

compared with static scheduling.

Efficiency Improvements: The dynamic scheduler reduced

the average overhead of timing due to task insertion and

selection by 34.7% and reduced memory overhead by up to

74.7%.

Case study: Real-world case of a coffee machine

application that has computationally intensive tasks, such

as capsule recognition using AI. Dynamic scheduling can

help balance high-frequency and long-duration tasks.

Relevance to RTOs and Real-Time Applications:

This work underlines the necessity of event-driven task

models for RTOS, since traditional periodic scheduling

cannot take into consideration the changing demands of

modern cyber-physical systems. The integration of this

lightweight dynamic scheduler into FreeRTOS shows that

such enhancements can be achieved with minimal resource

overhead; it will be feasible in constrained industrial

environments. It gives a major leap in the handling of real-

time constraints while supporting advanced features like

embedded intelligence. [7]

Assessment and Testing: An extensive series of performance

tests were conducted on the modified RTOS to evaluate its

quality of service and performance. Latency Measurement:

This test was to determine the available latency from the

system when it is interrupted or when the task is changed.

During the trials, tasks were periodically performed to

evaluate the running time consistency and stability. Due to

the use of microseconds, which is very important in cases

like suspension control systems where minimum missed

deadlines results in major performance differences. Vehicle

Suspension System: The suspension control system varies

the suspension of the vehicle in real-time depending on the

driving conditions. Nonetheless, with such systems,

feedback and alterations come into play. In order to allow

the suspension system to respond as quickly as possible and

to keep it operating at the highest level of performance, the

RTOS has to allow for the processing of information

received from the vehicle’s attitude, motion and even the

quality of the roadway in question, in real time, commanding

all necessary actions. To conclude, when Xenomai is used

with the Linux kernel, it does offer a superior real-time

performance enhancement compared to non-real time Linux

systems. Features such as low-latency context switches and

consistent execution time are important for engineers who

make car suspension control systems where timing of

milliseconds is very important. Therefore, non-RTOS

systems are not suitable for applications such as car

suspension control which are safety critical because most of

the times, they can complete the tasks faster but they cannot

guarantee completion of tasks within the specified time. In

terms of features, there are many that Xenomai has, but in

terms of performance and the tasks it can do, that might be

sacrificed. For example, some instead support

PREEMPT_RT which is a real time Linux module and allow

different levels of performance depending on how much real

time operation is needed. This report explores how the

deficiencies in the timeliness, predictability and reliability

of Linux can be addressed by the use of Xenomai, which

makes it suitable for use in embedded systems where real

lidar IOs for suspension systems control are needed. The

results confirm the assumption that real-time operating

systems are able to execute time-critical actions that are

necessary for such important systems. [7]. [7]6.5. The

research paper titled “The RTOS as the Engine Powering the

Internet of Things” gives more details about the relevance of

the real-time operating system (RTOS) in the Internet of

Things (IoT). In this context, VxWorks, an RTOS, widely

recognized for its reliability, ease of maintenance, and

security features making it ideal for IoT system deployment

was presented. The RTOS in question was VxWorks. The

author outlines the concept of VxWorks being an advanced

embedded IoT platform due to its real-time operability,

quick task scheduling without delays and the need for an

efficient structure in order to achieve the full deployment of

the IoT devices. It can cater for devices of varying degrees

including simple input sensors as well as complex systems

capable of running different applications due to its inherent

scalability and safety critical designs. As it is illustrated,

VxWorks has already been used in over 1.5 billion devices

hence giving, the manufacturers, a good environment to

build networkingbased systems. Exposition of VxWorks

platform in IoT The modularity of VxWorks systems:

VxWorks is based on a modular design allowing developers

to integrate and enhance middleware, protocols and

applications without altering the fundamental kernel. The

issue of modularity is critical in IoT where devices should

be flexible to adapt to different changes in networks or

market. Scalability: VxWorks is scaled for a number of IoT

devices from small, lightweight machines to large, complex

International Journal Of Educational Research 128 (2024)

PAGE NO : 54

systems. This is suitable for many Internets of Things

applications because it can adapt to varied memory, power,

and computation requirements. Security: VxWorks offers a

variety of built-in security options such as tamper resistant

code, secure boot and execution mechanisms, and safe data

movement amongst others. These properties are vital in

ensuring that Android devices, for instance, hundreds of

malwares ridden, unauthorized users and other threats are

out of reach.[8]

Fig.6. RTOS must adapt to meet the new challenges of

IoT[8].

The RTOS supports Networking: Bluetooth, ZigBee, Wi-Fi

standards are integrated in IoT operating systems compatible

with RTOS, which allows IoT devices to connect and

communicate in different network scenarios without hassle.

This connectivity is important as there is M2M

communication and transfer of real-time data involved in

IoT systems. Determinism: VxWorks is recognized for its

deterministic credentials thus, one of its main advantages

relates to meeting strict scheduling i.e. timing requirements

which is very important for IoT systems/applications which

are real-time. This ensures that the IoT devices function

safely and efficiently wherever deployed especially when

those areas are restrictive like the industrial control system

or medical device. The avionics of the F-35 lightning II, a

fifth generation stealth aircraft manufactured by Lockheed

Martin, is powered by VxWorks RTOS whose major focus

is reliability and real-time performance during in-flight

activities. Thanks to VxWorks which guarantees

deterministic operation, there is timely processing of critical

inputs from sensors like cameras and radar which is essential

for the success and safety of the mission. Its well-defined,

integrated, and extensive architecture allows for easy

incorporation of newer enhancements and upgrades, while

its built-in protections deter threats to the RTOS. In order to

ensure seamless interaction with other aircraft as well as

ground controls, various communication protocols are

supported by VxWorks. This reflects the importance of

VxWorks in modern military aircraft as it enhances

improved awareness, increased safety and operational

capability. Finally, because of such advanced features like

minimum latency, multi-core processor support and a well-

patterned design, VxWorks RTOS is a good candidate for

IoT solutions. Because of its extensibility, safety, and proven

reliability, it remains the preferred choice for companies

seeking to rapidly deploy effective IoT solutions and yet

remain competitive. [8]6.6 The study implements a

multithreaded real-time operating system RTOS that was

used to control a robotic vehicle. The device was based on

the dual core ESP32 microcontroller which is ascribed to the

fact that the microcontroller has inbuilt Bluetooth and Wi-Fi

connectivity. With this RTOS present in this framework, it

can carry out many functions at the same time all

spearheaded by controlling the motion of the motors,

monitoring sensors, and also implementing communication

via Bluetooth with an Android application. This project

included real time control by the users of the system

employing applications within the environment and also real

time control of the system processes employing the Arduino

IDE programming platform as well as the MIT app

innovator for the mobile application. In terms of task

allocation, time allocation and movement control

responsiveness within the vehicle, this was all managed

using the RTOS. For instance, in the case of a vehicle, the

motors of the aforementioned vehicle are controlled using

user inputs while at the same time ultrasonic sensors are in

the operation of scanning the surroundings for possible

obstacles. To avoid these obstacles, the RTOS quickly brings

the vehicle to a halt in instances when an obstacle is

detected. This system design is more focused on real time

operations bearing in mind the RTOS features all completion

of all activities performed in time. The other components of

the system include a DC-DC converter for providing

regulated power, ultrasonic sensors for obstacle detection

and an L298N motor driver for motion control of the robotic

platform. The RTOS helps to ensure that all the tasks are

performed concurrently without interrupting the flow of

performance in real time interaction and the whole system

design is aimed at performing quite well without any

hitches. To finish, a good example of a technique for

controlling real-time operations in embedded systems is the

use of the RTOS which is a multi-threaded Real Time

Operating System framework for ESP32 microcontroller.

This innovation ensures opportuneness and steadfastness by

empowering concurrent errand execution, especially in

International Journal Of Educational Research 128 (2024)

PAGE NO : 55

applications that call for human contact and natural

observing. This extend illustrates the plausibility of

coordination RTOS with versatile apps, in this manner

giving a versatile and customizable stage for advance

headways in mechanization and mechanical autonomy. [9]

Fig 7. Overall Software Architecture [9]

 V. CHALLENGES

There are several very critical challenges one faces in the

use of real-time operating systems within modern

embedded systems, especially in industrial and event-

driven applications. Indeed, one problem is mainly getting

around the low resource utilization and high-performance

conundrum. RTOSes are designed to run with minimal

memory and processing overhead but must ensure timely

and predictable execution of tasks. This is particularly

challenging in resource-scarce environments, for instance

small microcontrollers, as balancing task responsiveness

and system efficiency is quite tough. The other important

issue lies in a very restricted support for dynamic

scheduling in most RTOS implementations. Typical RTOS

architectures are highly based on static, priority-based

preemptive scheduling that simply is not up to the

challenge of handling the inherently nondeterministic

nature of event-driven tasks, which causes missing

deadlines and less-than-optimal use of resources. This

situation is further complicated with added advanced

functionalities, such as artificial intelligence or machine

learning workloads. These types of jobs are often highly

computational in nature and compete with the requirement

for high-frequency, time-critical operations like sensor

control or even user interface management. Moreover, it is

sometimes challenging to scale and achieve flexibility in

RTOSes in relation to supporting different demands

without significant overheads from the application. For

example, extending scheduling policies or adapting energy

efficiency mechanisms can add extra memory usage and

complexity, which is an unfavorable aspect for light

systems. The cross-platform lack of standardization across

various RTOS platforms poses compatibility and

integration challenges while working on industrial IoT

application cases, whereby multiple devices and protocols

need to interact seamlessly. Security and reliability are

ongoing concerns because RTOSes often operate in safety-

critical systems: robust fault tolerance and data protection

without degrading performance is demanding. This

requires innovations in protocol handling and

synchronization as industrial and embedded systems

evolve to include more interconnected devices, higher-

level communication stacks, and real-time networking.

These challenges highlight the need for continuous

innovation and optimization in RTOS design to meet the

growing demands of real-time and embedded

applications.[10]

1. In the case where an RTOS is being used the decision

making process about the appropriate software

architectural style for the CPS is complex. This is

especially true in medical applications for example

plasmapheresis equipment. CPS are characterized as

those that need timely and accurate responses to some

stimuli external to the system since this is much

important in circumstances that involve the lives of

individuals. The demand for interrupt response time,

job switching, and deadlines complicate decision

making owing to architectural specificity. The

software architecture of the plasmapheresis machine is

required to manage a number of components which

must be regulated simultaneously and the regulation of

each depends on specified time constraints. There two

fundamental ways of practicing such systems namely

an interrupt-driven model/ or an RTOS-based

architecture. Due to serialization, structure by interrupt

the architecture may involve problems such as

complex nested interrupt control and potential delay in

a solving of tasks. Often this architecture requires

several distinct timers which is inconvenient and can

lead to improper management of critical operations.

On the other hand, an RTOS provide a well-defined

timing subsystem, and priority scheduling to create a

proper way of handling time-sensitive + non-sensitive

processes. To optimise the usage of resources and

ensure that all the stipulated time frames of important

events are met, the RTOS can provide for the apparent

parallelism of a number of jobs. Since delay in

response could culminate to serious harm to the

International Journal Of Educational Research 128 (2024)

PAGE NO : 56

patient, this functionality is vital in the execution of

medical devices. Thus, the given evaluation proves

that the proposed RTOS-based architecture is more

dependable and efficient for delivering real-time

control in medical applications due to having specific

interdependent and accurate timing constraints for the

CPS under consideration. [10]

2. The work also examines the challenges that real-time

operating systems (RTOS) face while trying to address

the requirements of artifcial intelligence (AI) as well

as the Internet of Things (IoT) in time-sensitive

applications. With increasing numbers of IoT, they

generate a lot of data that have to be analyzed on the

fly, for instance, in driverless-car and smart-city

applications. To ensure dependability and safety the

RTOS should ensure that critical operations are done

in time. It is always challenging to achieve and even

more so when there are more significant hurdles such

as network latency and unpredictable data traffic.

Moreover, the adoption of the AI algorithms

introduces more challenges in terms of the high

computational cost, which may be incompatible with

the need for real time processes. In order to decrease

the latency, the developers are encouraged to optimize

these algorithms additionally and use principles of

edges computing. Due to these various

interconnections these are also real time systems hence

there arises the issue of security especially in respect

to their data where high levels of security must be

placed to ensure that the systems perform optimally

while at the same time maintaining the security of the

data. Among the various methods of controlling the

execution of tasks in RTOS, the Round Robin

scheduling algorithm is described in detail in the study.

Since it provides a cyclic allocation of time fractions

for various activities, it helps significantly in time-

sharing of at least several processes. This is very useful

in the Internet of Things where several devices need to

work on data at the same time. While Round Robin is

effective for activities of similar importance in systems

with low load and for most real-time applications,

there may be situations when it is not suitable, namely,

cases if stricter time constraints are required. In

summary, the study seeks to establish that in meeting

the diverse needs of the current applications, RTOS

must super rightly overcome the complexities of data

management, algorithms, and security. This is also true

as it also recognizes scheduling algorithms such as

Round Robin in the achievement of these objectives.

VI. CONCLUSION

Real-Time Operating Systems (RTOS) are important

technologies in many areas that require predictable and

reliable performance such as robotic cars [9], space

missions [5][11], vehicle suspension systems [7] and

patient monitoring systems [4]. In such systems, there is

always the need for an RTOS to allow multitasking, handle

interruptions and respond to events in real time [2]. The

systems perform efficiently and reliably and safety was

enhanced by the employment of RTOS in these

applications. Nevertheless, it comes with a few drawbacks

that might hinder its full potential. One of the fears that is

primarily important is making sure that the system is

immune to soft errors [3]which otherwise would cause the

system to crash or device corruption. There are many

reasons for soft errors including radiation, power supply

fluctuations, and software issues. Therefore, in order to

ensure the constant operation of the system, the RTOS has

to be designed in such a way that it can identify and correct

these errors. Minimizing task switching latency on the

other hand is quite a challenge [10], more so where there

are strict time constraints on the execution of various

operations. To ensure that timeframes are respected, this

kind of an RTOS must allow swift and efficient changes

from one task to another. It has been demonstrated through

research carried out on RTOS case studies based on open

sources such as Linux and OSEK, that these challenges can

be tackled with resolve and good performance can still be

achieved in spite of these challenges. For example, Linux

is used in a variety of platforms that include embedded

systems and Android mobile devices while OSEK is used

in automotive applications such as engine control system

and anti-lock braking systems. The ability to observe and

develop Real-Time Operating Systems (RTOS) that meet

the characteristics of predictability, reliability, and

efficiency has been illustrated. In addition, the use of RTOS

in advancing technology such as sensor networks, and the

Internet of Things (IoT) has highlighted the extent to which

they are effective in real time processing and decision

making. Thus while RTOS will provide the necessary

timing and synchronization mechanisms in the sensor

networks to ensure that data is transferred reliably and

efficiently, it will also offer the necessary framework in IoT

[12]to handle and analyse large amounts of data generated

by various sensors and devices. The incorporation of RTOS

in these applications is marveled due to its capability of

creating new innovative applications and services which in

turn can re-structure business processes and social

activities. Several approaches such as the use of fault

tolerant systems, migration hints [15], Bayesian

International Journal Of Educational Research 128 (2024)

PAGE NO : 57

networks[5], and advanced scheduling algorithms have

been proposed in literature to enhance the efficiency,

robustness and reliability of RTOS. Migration hints may

assist cut down on the task migration costs; such costs are

otherwise disadvantageous to the system by causing delays,

while Bayesian networks help in modelling evaluating or

even forecasting failures, errors, and aberration in the

complex systems. Imagine being predicted by advanced

scheduling techniques that will make it possible for us to

add, detect imperfections in a system and also carry out

corrective actions if things went wrong within the defined

time frame [14]. These approaches make the

implementation and performance of RTOS enhancement

providing the necessary requirements of the highest of all

real-time applications. The studies presented in this paper

demonstrate that research and development endeavours

aimed at overcoming barriers concerning the adoption of

real-time operating systems RTOS are of utmost

importance. Additional research and technological

interventions are required to improve the efficiency,

reliability, and overall performance of RTOS, as these

systems are still critical in the evolution of real-time

systems.

REFERENCES

[1] Barbareschi, M., Barone, S., Casola, V., Montone, P., &

Moriconi, A. (2022). A Memory Protection Strategy for

Resource Constrained Devices in Safety Critical

Applications. A Memory Protection Strategy for Resource

Constrained Devices in Safety Critical Applications.

https://doi.org/10.1109/icsrs56243.2022.10067350

 [2] Ivanov, B. I., Hotmar, A., Ivanov, I. E., & Georgieva,

D. (2023). A Software Architecture Selection for Cyber-

Physical System. A Software Architecture Selection for

Cyber-physical systems.

 https://doi.org/10.1109/comsci59259.2023.10315884

[3] Lencioni, L. R., Loubach, D. S., & Saotome, O. (2022).

An Application-Specific Real-Time Operating System

Towards Safety-Critical Requirements: a Case Study. 2022

IEEE/AIAA 41st Digital Avionics Systems Conference

(DASC), 1–10.

https://doi.org/10.1109/dasc55683.2022.9925758

[4] Nayak, S., Sharma, Y. K., & Student, R. N. (2023). An

Optimized Round Robin Central Processing Unit

Scheduling Algorithm with Dynamic Time Quantum. An

Optimized Round Robin Central Processing Unit

Scheduling Algorithm With Dynamic Time Quantum, 3,

1482–1490.

https://doi.org/10.1109/smarttechcon57526.2023.1039148

9
[5] Moghadam, V. E., Meloni, M., & Prinetto, P. (2021).

Control-Flow Integrity for Real-Time Operating Systems:

Open Issues and Challenges. Control-Flow Integrity for

Real-Time Operating Systems: Open Issues and

Challenges.

https://doi.org/10.1109/ewdts52692.2021.9581003

[6] Taji, H., Miranda, J., Peón-Quirós, M., Balasi, S., &

Atienza, D. (2023). Dynamic Scheduling for Event-Driven

Embedded Industrial Applications. Dynamic Scheduling

for Event-Driven Embedded Industrial Applications, 1–6.

https://doi.org/10.1109/vlsi-soc57769.2023.10321845
[7] Sudhakar, A., C, R., & S, A. (2022). Implementation

architecture of IEC 60870-5-103 communication protocol

on arm platform running on RTOS for industrial IEDs.

2022 4th International Conference on Inventive Research

in Computing Applications (ICIRCA), 3, 80–86.

https://doi.org/10.1109/icirca54612.2022.9985497

[8] Veeramanikandasamy, T., Babu, P. R., Devendiran, S.,

& Aravind, N. (2023). Internet of Farming Things and

RTOS based Robotic System for Water Quality Monitoring

and Fish Feeding in Freshwater Aquaculture. Internet of

Farming Things and RTOS Based Robotic System for

Water Quality Monitoring and Fish Feeding in Freshwater

Aquaculture.

https://doi.org/10.1109/icccnt56998.2023.10308205

 [9] Forlin, B., Chen, K., Alachiotis, N., Cassano, L., &

Ottavi, M. (2024). Lightweight Instrumentation for

Accurate Performance Monitoring in RTOSes. Lightweight

Instrumentation for Accurate Performance Monitoring in

RTOSes, 1–2.

https://doi.org/10.23919/date58400.2024.10546790

[10] Pradhani, J., D, N., Nidhi, N., Saran, C. S., Goni, A.,

Mallidu, J., Itagi, A. R., & Patil, A. (2024). Prototype

Development for Water Leakage Monitoring System with

RTOS Implementation. Prototype Development for Water

Leakage Monitoring System With RTOS Implementation,

1–7. https://doi.org/10.1109/icdcot61034.2024.10515556

[11] Badawy, A. A., Hassan, M. A., Hassaballa, A. H., &

Elhalwagy, Y. Z. (2024). Real Time Integration GPS with

Gyro-Compassing Using Two Cascaded EKF with Free

RTOS. Real Time Integration GPS With Gyro-compassing

Using Two Cascaded EKF With Free RTOS, 7, 307–314.

https://doi.org/10.1109/icci61671.2024.10485034

[12] Delgado, R., Jo, Y. H., & Choi, B. W. (2022). RT-

AIDE: a RTOS-Agnostic and Interoperable development

environment for Real-Time Systems. IEEE Transactions on

Industrial Informatics, 19(3), 2772–2781.

https://doi.org/10.1109/tii.2022.3182790
[13] Serino, A., & Cheng, L. (2020). Real-Time Operating

Systems for Cyber-Physical Systems: Current Status and

Future Research. Real-Time Operating Systems for Cyber-

Physical Systems: Current Status and Future Research.

International Journal Of Educational Research 128 (2024)

PAGE NO : 58

https://doi.org/10.1109/icsrs56243.2022.10067350
https://doi.org/10.1109/comsci59259.2023.10315884
https://doi.org/10.1109/dasc55683.2022.9925758
https://doi.org/10.1109/smarttechcon57526.2023.10391489
https://doi.org/10.1109/smarttechcon57526.2023.10391489
https://doi.org/10.1109/ewdts52692.2021.9581003
https://doi.org/10.1109/vlsi-soc57769.2023.10321845
https://doi.org/10.1109/icirca54612.2022.9985497
https://doi.org/10.1109/icccnt56998.2023.10308205
https://doi.org/10.23919/date58400.2024.10546790
https://doi.org/10.1109/icdcot61034.2024.10515556
https://doi.org/10.1109/icci61671.2024.10485034
https://doi.org/10.1109/tii.2022.3182790

https://doi.org/10.1109/ithings-greencom-cpscom-

smartdata-cybermatics50389.2020.00080

[15] S, S. M., & S, N. G. (2021). A survey on different real

time operating systems. International Journal of

Engineering and Advanced Technology, 10(5), 221–223.

https://doi.org/10.35940/ijeat.e2762.0610521

[16] Bini, E., Chantem, T., Childers, B., & Mosse, D.

(2022). IEEE TC Special issue on Real-Time Systems.

IEEE Transactions on Computers, 72(1), 1–2.

https://doi.org/10.1109/tc.2022.3227228
[17] Rico, R., Rico-Azagra, J., & Gil-Martinez, M. (2022).

Hardware and RTOS design of a flight controller for

professional applications. IEEE Access, 10, 134870–

134883. https://doi.org/10.1109/access.2022.3232749

International Journal Of Educational Research 128 (2024)

PAGE NO : 59

https://doi.org/10.1109/ithings-greencom-cpscom-smartdata-cybermatics50389.2020.00080
https://doi.org/10.1109/ithings-greencom-cpscom-smartdata-cybermatics50389.2020.00080
https://doi.org/10.35940/ijeat.e2762.0610521
https://doi.org/10.1109/tc.2022.3227228
https://doi.org/10.1109/access.2022.3232749

	Abstract— [1] Real-time operating systems (RTOS) are the fundamental of today’s embedded systems that provide precise control and time-sensitive characteristics in the field of different applications. This paper explicates the various uses of RTOS su...
	I. INTRODUCTION
	II. BACKGROUND
	III. OPTIMIZING RTOSPERFORMANCE
	IV. CASE STUDY AND IMPLEMENTATION
	V. CHALLENGES
	VI. CONCLUSION

