
Optimal Paths and Profit: A Study of DP vs. Greedy 

Solutions in Staircase and Knapsack Problems 
Shlok Kumbhar1, Pranjali Mendhekar2, Ram Yalmate3, Prof. Dipti Pandit4 

Department of Electronics and Telecommunication 

Vishwakarma Institute of Technology Pune, India 

 
 

 
Abstract: Optimization problems, for example, the 0-1 Knapsack 
and Staircase Problems are part of the most important ideas in 
computer science; a solution has to be optimized to solve them. 
Optimistic strategies are needed when scenarios of resource 
allocation, logistics, and cost minimization are involved. The 
objective of this research work is to compare two important 
algorithms: Dynamic Programming (DP) and Greedy 
algorithms as implemented in the Knapsack and Staircase 
Problems. These algorithms, although fast because they make 
locally optimal choices, are likely to miss the global optimum. 
Conversely, DP assures the global optimums results based on 
cumulative costs. We implemented both approaches to each 
problem, so it could clearly highlight trade-offs between them. 
A close examination of our research demonstrates that Greedy 
is suited to speed-critical applications while DP is more suitable 
to precision-dependent applications especially for cost 
minimization and resource management. 

 

Keywords: greedy algorithm, dynamic programming, 0-1 
knapsack problem, staircase problem, performance comparison. 

I. INTRODUCTION 

Advanced computational algorithms have advanced to 
such a level that they are now an inescapable requirement in 
handling huge volumes of data and solving a vast scale of 
real-world problems. Among these diverse algorithmic 
methods in computational optimization, dynamic 
programming and greedy algorithms are perhaps the most 
fundamental two design approaches. Each of these methods 
has different properties that make them suitable for use with 
different types of problems, and according to the nature of the 
data and specifics of the need of research, they often present 
dramatically disparate results. Especially this paper evaluates 
the performance in practical mode of two algorithms: The 0- 
1 knapsack problem and the cost minimization in a staircase 
problem. This work enlightens programmers about what best 
practice to apply on optimizing their functions through 
investigating the way they are implemented in real situations 
[5]. Any strategy, for the future still, must be optimal in all 
following states, regardless of the initial conditions. 

This is the key feature of an ideal decision algorithm. 
Both the greedy algorithms and dynamic programming 
depend on this, and it is known as optimum substructure. 
Dynamic programming often cuts the problem into pieces that 
are smaller and more manageable-this can be termed as 
subproblems, determines a solution for each by recursively 
using the potential solutions and then recalls the solution to 
use later to improve the efficiency. Greedy algorithms, on the 
other hand, depend on achieving a global optimum from the 
choice of locally optimum solutions at 

each step. This calls for the need to fine-tune algorithms with 
better results. However, it has been reasoned that some 
problems may remain unsolved despite all the attempts and 
re-engineering with alternative solutions requiring study of 
different methods. Thus, analyzing the partial knapsack and 
also 0/1 knapsack issues, it also tosses out differences of 
algorithms between greedy and dynamic programming. In 
fact, 0/1 knapsack problem is a highly renowned example for 
how different types of algorithmic approaches could result in 
different kinds of outcomes, which would be determined by 
what approach one takes [5]. The staircase problem again 
shows that strategic planning is prime importance for the 
minimization of cost, since each step ensures a huge 
difference from the final outcome. 

Instead, the interest of the paper lies in theoretic 
rationales behind such approaches and discusses these in 
relation to their uses in various domains such as project 
management, logistic, and resource allocation based on 
comparative analysis. 

The paper is targeted towards equipping computer 
professionals with the skills they require in handling 
challenges related to the selection of algorithms. By realizing 
what are the advantages and disadvantages of both the greedy 
and dynamic programming techniques results appear in more 
effective and efficient problem-solving in a wide number of 
programming pursuits. In a nutshell, this paper adds to the 
already existing body of knowledge concerning optimization 
techniques, especially for problems of cost minimization and 
the 0-1 knapsack problem in particular. The results are not 
only useful in academic research but are helpful in practice 
with the presentation of each technique's pros and cons. With 
these details, readers will be able to build good solutions in 
overcoming difficult optimization problems in their 
professional fields. 

 

II. LITERATURE REVIEW 

There are two paradigms of algorithm design that come in 
handy in the solving of specific optimization problems-DP 
and Greedy Algorithms. DP is particularly suited for 
problems with overlapping subproblems, having optimal 
substructure, for which optimization requires methods such 
as memoization and tabulation [2]. It also has significant 
applications in problems such as the Knapsack Problem and 
the Longest Common Subsequence. In contrast, Greedy 
Algorithms work on the assumption that by making a 
sequence of locally optimum decisions they will somehow 
magically end up with some kind of global optimum. Very 
often it indeed leads to solutions faster and simpler in 
comparison, as with minimum spanning tree algorithms, for 

International Journal Of Educational Research 128 (2024)

PAGE NO : 67



instance. Yet this does not guarantee that the 0/1 Knapsack 
Problem does not have this optimality for all problems. For 
instance, 0/1 Knapsack Problem suffers from inefficiency. 

In order to solve the Knapsack Problem and other 
optimization problems, the Greedy and DP algorithms are 
implemented and optimized in this paper. In actuality, there 
is a fascinating application for common issues with 
transportation, product pricing, and vending machines. The 
study also compares the two approaches used to solve the 
Minimizing Cost in a Staircase problem, concluding that the 
Greedy approach "always try to optimize immediate choices, 
and for DP "it always tries to evaluate cumulative choices at 
each step so that the global minimum is ensured." This also 
highlights how much the DP method saves in terms of the 
overall traversal cost. The study also provides Java pseudo- 
codes for the Greedy and DP approaches, and a graph shows 
the total expenses of each technique. 

 
III. METHODOLOGY 

A. Greedy Algorithm 
 

1. Introduction to Greedy Algorithms 

An approach known as a greedy algorithm selects the locally 
optimal option at each stage in the hopes that the sum of those 
local solutions will produce the globally optimal solution. 
The use of greedy algorithms, which have much simpler and 
more effective versions for a variety of problems, can 
occasionally result in a less-than-ideal solution [3] [5]. 

 
Basic characteristics of Greedy Algorithm: 

● Locally optimal choice: The algorithm chooses the 
best available at each step without backing off 
previous choices. 

● Non-look back: All decisions have been made and 
would not be reversed; no looking back. 

● Efficiency: Greedy algorithms are usually more 
time-efficient than exhaustive or dynamic methods. 

 
2. Key Problems Solved by Greedy Algorithms 

● Using both the Kruskal and Prim algorithms, the 
Minimum Spanning Tree (MST) is calculated. 

● The process of determining the shortest path in a 
graph with nonnegative weights is known as 
Dijkstra's Shortest Path Algorithm. 

● Activity Selection Problem: Choose the maximum 
number of non-conflicting activities. 

● Huffman Coding Huffman code is used to create 
prefix codes for optimal compression of data [3]. 

 
B. Dynamic Programming 

 
1. Introduction to Dynamic Programming (DP) 

Dynamic programming (DP) is an optimization 
technique that divides complicated issues into simple 
subproblems that overlap and only need to be solved once. 
Memorization is the practice of storing its outcomes for later 
use. DP is most effective when applied to substructure 
optimization and overlapping subproblems. [4, 5]. 

 
Dynamic Programming Characteristics: 

● Optimal substructure: The subproblem's answer 
can be used to derive the problem's solution. 

● Overlapping Subproblems: The problem is recursive 
and the same subproblems are solved more than 
once. 

● Memoization: We save the solutions for solved 
subproblems so we would not solve them twice. 

● Bottom-up or Top-down: DP can be implemented in 
two different ways - either top-down, i.e., using 
recursion and memoization or bottom-up using a 
table [4]. 

 
2. Key Problems Solved by Dynamic Programming: 

● Fibonacci Sequence Using DP Avoid repetition 
Compute the nth Fibonacci number efficiently. 

● knapsack problem: maximize value in the knapsack 
under its capacity. 

● The Longest Common Subsequence (LCS) 
function yields the longest subsequence that two 
sequences have in common. 

● Matrix Chain Multiplication: The number of scalar 
multiplications in matrix chain operations should be 
optimized. 

● Modify the Distance Determine how few 
operations are required to change one string into 
another. 

 
C. Key Problems 

 
1. Minimizing Cost in a Staircase Problem: Greedy vs DP 

a) Introduction: 

A robot should move to a sequence of workstations. For 

every workstation, some cost is associated. In every step, the 

robot can proceed one or two steps in any direction. This 

problem is known as the Minimizing Cost in a Staircase. In 

this problem, it has been assigned the task to choose an 

ordered subset of a sequence with the minimum total traversal 

cost from the beginning to the end of the sequence. In this 

paper, we are considering two approaches namely, Greedy 

and Dynamic Programming (DP) [7]. 

 
Given the cost array: 

cost = [10, 15, 20, 1, 5, 10] 

Each element represents the cost of passing through that 
workstation. 

 
b) Greedy Approach: 

In the greedy approach, the robot selects the next move based 
on the immediate lowest cost between the next two 
workstations. This approach is straightforward but often leads 
to suboptimal overall results. 
Stepwise Greedy Solution: 

1. Start at cost[0] = 10. 

2. Compare cost[1] = 15 and cost[2] = 20. Choose 

cost[1] = 15 (lower cost). 

International Journal Of Educational Research 128 (2024)

PAGE NO : 68



3. Compare cost[2] = 20 and cost[3] = 1. Choose 

cost[3] = 1. 

4. Compare cost[4] = 5 and cost[5] = 10. Choose 

cost[4] = 5. 

5. Finally, move to cost[5] = 10. 
 

Greedy Path: 

10 → 15 → 1 → 5 → 10 

Total Cost: 10 + 15 + 1 + 5 + 10 = 41 
 

Table 1. Step-by-Step Calculation of Total Cost in Greedy 
Algorithm for Staircase Problem [2] 

c) Dynamic Programming (DP) Approach: 

The dynamic programming approach solves this problem by 
calculating the cumulative cost at each workstation, ensuring 
the minimum total cost. The recurrence relation is: 
minCost[i] = cost[i] + min(minCost[i-1], minCost[i-2]) 
This relation ensures that at each step, the robot considers the 
minimum cost from the previous two steps to find the optimal 
solution. 
Stepwise DP Solution: 

1. Initialize: 

o minCost[0] = cost[0] = 10 

o minCost[1] = cost[1] = 15 

2. For each subsequent step, compute: 

o minCost[2] = cost[2] + min(minCost[1], 

minCost[0]) = 20 + min(15, 10) = 30 

o minCost[3] = cost[3] + min(minCost[2], 

minCost[1]) = 1 + min(30, 15) = 16 

o minCost[4] = cost[4] + min(minCost[3], 

minCost[2]) = 5 + min(16, 30) = 21 

o minCost[5] = cost[5] + min(minCost[4], 

minCost[3]) = 10 + min(21, 16) = 26 

 
 
 
 
 
 
 
 

Table 1. shows the greedy approach results in a total cost of 

although it minimizes individual steps, it overlooks the 

cumulative cost of the overall path [7]. 

. 
Greedy Approach Pseudocode in Java: 

 
Function GreedyMinCost(cost): 

n = length of cost 
totalCost = cost[0] 
currentPosition = 0 

 
while currentPosition < n - 1: 

if currentPosition + 1 < n and currentPosition + 2 < n: 
if cost[currentPosition + 1] < cost[currentPosition + 2]: 

currentPosition = currentPosition + 1 
else: 

currentPosition = currentPosition + 2 
else if currentPosition + 1 < n: 

currentPosition = currentPosition + 1 
else: 

break 
totalCost = totalCost + cost[currentPosition] 

return totalCost 

Optimal DP Path: 

10 → 15 → 1 → 10 

Total Cost: 10 + 15 + 1 + 10 = 26 
 

Table 2. Optimal Path Cost Breakdown Using Dynamic 

Programming for Staircase Climbing [2] 

 
Step Current 

Positon 
Previous 

Cost 
DP 

Calculation 
minCost[i] 

0 0 (10) - minCost[0] 
= 10 

10 

1 1 (15) - minCost[1] 
= 15 

15 

2 2 (20) minCost[0] 
= 10, 

minCost[1] 
= 15 

minCost[2] 
= 

20 + 10 = 
30 

30 

3 3 (1) minCost[1] 
= 15, 

minCost[2] 
= 30 

minCost[3] 
= 

1 + 15 = 16 

16 

4 4 (5) minCost[2] 
= 30, 

minCost[3] 
= 16 

minCost[4] 
= 5 + 16 = 

21 

21 

5 5 (10) minCost[3] 
= 16, 

minCost[4] 
= 21 

minCost[5] 
= 10 + 16 = 

26 

26 

 
Step 

 

Current 
Position 

 

Next 
Options 

 
Choice 

 
Total Cost 

 
1 

 
0(10) 

 
15, 20 

 
15 

 
10 + 15 = 25 

 
2 

 
1(15) 

 
20,1 

 
1 

 
25+1=26 

 
3 

 
3 (1) 

 
5,10 

 
5 

 
26 + 5 = 31 

 
4 

 
4 (5) 

 
10 (last 

step) 

 
10 

 
31+10=41 

International Journal Of Educational Research 128 (2024)

PAGE NO : 69



Minimizing Cost in a 
Staircase: Greedy vs 

Dynamic Programming 

50 
 

0 
1 2 3 4 5 6 

Steps 

 

 
Greedy Cumulative Cost 
DP Cumulative Cost 

Table 2. shows the dynamic programming approach achieves 
a total cost of 26, which is significantly lower than the greedy 
approach. By considering cumulative costs at every step, DP 
ensures the global minimum is found. 

 
Comparison of Results 

● Greedy Approach: Total cost = 41, path: 10 → 15 → 
1 → 5 → 10. 

 

● DP Approach: Total cost = 26, optimal path: 10 → 
15 → 1 → 10. 

 

The greedy approach focuses on minimizing immediate costs, 
leading to a higher total cost. In contrast, the dynamic 
programming method considers the entire journey and 
calculates the minimal overall cost, producing the optimal 
solution. In problems requiring cost minimization, the 
dynamic programming approach clearly outperforms the 
greedy approach by considering cumulative costs and 
providing an optimal solution. The comparison highlights 
how DP achieves a significant reduction in total cost, proving 
its efficiency in this scenario. 

Dynamic Programming Approach Pseudocode in Java: 

Function DPMinCost(cost): 
n = len(cost) 
if n = 0: 

return 0 
if n = 1: 

return cost[0] 
minCost = list(range(n)) 
minCost[0] = cost[0] 
minCost[1] 

 
for i = 2 to n - 1: 

minCost[i] = cost[i] + min(minCost[i - 1], minCost[i - 2]) 
return minCost[n - 1] 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1: Minimizing Cost in a Staircase: Greedy vs 

Dynamic Programming [1]. 

In the Minimizing Cost in a Staircase Problem, this figure 
shows the total costs of the Greedy and Dynamic 
Programming (DP) approaches. The Y-axis shows the total 

expenditures, and the X-axis shows the number of stages 
from 1 to 6. 
Blue line is the Greedy approach, which climbs steeply to a 
total cost of 41 by step 5, showing a tendency for the Greedy 
approach to take the cheapest costs in the immediate step. In 
contrast, the orange line is the DP approach, a smooth 
increase in cost and results in a total cost of 26 by step 5. This 
comparison shows that where Greedy concentrates on saving 
in the short term, DP optimally minimizes overall expenses. 

 
2. Knapsack Problem: Greedy vs DP 

 
a) Introduction: 

In the Knapsack Problem, there is a thief with a knapsack and 
he needs to pick items for maximizing the value without the 
weight limit. Every object has a specific weight and worth. 
Dynamic Programming (DP) is the best method for solving 
the 0/1 knapsack problem, while greedy programming is best 
suited for the fractional knapsack problem. We go over both 
strategies in this section with an example [1] [6]. 

 
Problem Setting: 

Item values and weights are given as follows: 
Values: [60,100,120] 

Weights: [10,20,30] 
Knapsack Capacity: 50 units 

b) Greedy Method (Fractional Knapsack: 
For the Fractional Knapsack Problem, the Greedy technique 
can be applied. Items in this issue can be divided into 
fractions. To maximize the value as quickly as possible 
before the capacity is full, the strategy is to choose goods with 
the highest value-to-weight ratio [1]. 

 
Step-by-Step Greedy Solution: 

1. Value-to-Weight Ratio Calculation: 

First, 60/10 = 6.0; 

second, 100/20 = 5.0; 

third, 120/30 = 4.0 

2. Order Items by Ratio (Highest to Lowest) 

Items 1 (6.0), 2 (5.0), and 3 (4.0) 

3. Select Items: 

Take all of Item 1 (10 units, 60 value), with 40 
units remaining capacity. 

Take all of Item 2 (20 units, 100 value), with 20 
units of capacity remaining. 

20/30 of Item 3 (Proportional value: 20/30 × 120 = 

80). Take 20 units out of 30. 

4. Total Value: 

60+100+80=240 

C
u

m
u

la
ti

ve
 C

o
st

 

International Journal Of Educational Research 128 (2024)

PAGE NO : 70



 

 
Greedy Approach Pseudocode: 

 
Function GreedyKnapsack(values, weights, capacity): 

n = number of values 
ratio = selection of value-to-weight ratio 

sort items by ratio in descending order 
totalValue = 0 

for each item in sorted_items: 
if capacity ≥ weights[item] 

totalValue += values[item]; 

capacity -= weights[item] 
else: 

totalvalue += (values[item] / weights[item]) * 
capacity 

break 

return totalValue 
Result for Greedy Approach: 
Greedy Approach: 

Question 1 (10 items, 60 points) 
Article 2 (20 marks, 100 words) 

20/30 Item 3 20 Units, 80 Value 

Total Total 240 (including fractional items) 

 
Dynamic Programming (DP) Approach (0/1 Knapsack): 

Since all items must be taken whole numbers, the 0/1 
Knapsack problem forces items to be included or not 
included entirely as compared to the DP method wherein it 
computes the best result involving all possible combinations 
of products [1] [4]. 
DP Solution Solves: 
Given a knapsack capacity of w and the first i items, let 
dp[i][w] be the highest value that can be obtained [6]. 

 
1. Introduction 

dp[0][w] = 0 for all w (nothing = no value). 
dp[i][0] = 0 for all i (no capacity = no value). 

2. Recurrence Relation: 
For each object i, for each weight w, update DP 
table 
dp[i][w] = 
max(dp[i−1][w],dp[i−1][w−weight[i−1]] 

+value[i−1]) 
If the weight of the item exceeds the capacity w, 
then reject the item 

dp[i][w] = dp[i−1][w] 

 
Table 3. Knapsack Optimization Table: Maximum Value 

achieved for Varying Weights and Items [5] 

Items with values [60,100,120], weights [10,20,30], and a 
knapsack capacity of 50 are displayed in Table 3. 

● Item 1: For capacities 10 or more, take Item 1 (60 
value). 

● Item 2: For capacities 20 or more, take Item 2 (100 
value). If combined with Item 1, we can achieve 
160 value. 

● Item 3: For capacities 30 or more, the optimal 
solution is taking Item 1 and Item 3 for a total 
value of 220. 

DP Approach Pseudocode: 
 

Function DPKnapsack(values, weights, capacity): 

n = length of values 

dp = a two dimensional array of size (n+1) x (capacity+1) 

 
for i = 0 to n: 

for w = 0 to capacity: 

if i == 0 or w == 0: 

dp[i][w] = 0 

else if weights[i-1] <= w: 

dp[i][w] = dp[i-1][w] or dp[i-1][w-Weight[i-1]] + 

Value[i-1] 

else: 

dp[i][w] = dp[i-1][w] 

return dp[n][capacity] 

 
Result for DP Approach: 

● DP Path: 

o Item 1 (10 units, 60 value) 

o Item 2 (20 units, 100 value) 

o Item 3 (30 units, 120 value) 

● Total Value: 220 (with whole items only) 

Result & Discussion: 

1. Minimizing Cost in a Staircase Problem 

Using the cost array cost = [10, 15, 20, 1, 5, 10], we evaluated 
both the Greedy and Dynamic Programming (DP) 
approaches: 

● Greedy Approach: 

Path: 10 → 15 → 1 → 5 → 10 

Total Cost: 41 

The Greedy approach focuses on immediate costs, resulting 
in a higher total. 

● Dynamic Programming Approach: 

Path: 10 → 15 → 1 → 10 

Total Cost: 26 

The DP approach considers cumulative costs, yielding a 
lower total cost. 

Item → \ 
Weight ↓ 

0 10 20 30 40 50 

0 Items 0 0 0 0 0 0 

Item 1 0 60 60 60 60 60 

Item 2 0 60 100 160 160 160 

Item 3 0 60 100 160 180 220 

International Journal Of Educational Research 128 (2024)

PAGE NO : 71



 

Table 3. Comparison for Staircase Problem [1] 
 

Approach Time 
Complexit 

y 

Space 
Complexit 

y 

Explanatio 
n 

Greedy O(n) O(1) Single pass 
with 

minimal 
memory 
usage. 

Dynamic 
Programmin 

g 

O(n) O(n) Single pass 
with an 

additional 
array for 

costs. 

 
2. Knapsack Problem 

Concerning the 0/1 Knapsack Problem parts, the items have 
been set to values and weights. Let values = [60, 100, 120] 
and weights = [10, 20, 30] and capacity = 50 [6]. 

 Greedy Approach (Fractional Knapsack): 
Total Value: 240 (using a fractional approach) 

The Greedy method optimizes based on value-to-weight ratio 
but only applies to fractional items. 

● Dynamic Programming Approach (0/1 Knapsack): 

Total Value: 220 (taking whole items) 

The DP approach calculates maximum value considering the 
weight constraints. 

 
Table 4. Comparison for Knapsack Problem [5] 

 
Approach Time 

Complexit 
y 

Space 
Complexit 

y 

Explanation 

Greedy 
(Fractional) 

O(nlogn) O(1) Sorting 
items based 

on ratio, 
then a 

linear pass. 
Dynamic 

Programming 
O(n×W) O(n×W) 2D array 

storing 
maximum 
values for 

each 
weight. 

 
In the Staircase Problem, the Greedy approach is faster but 
leads to suboptimal costs. Although it uses more memory, the 
DP method offers the best result. In contrast to the DP 
strategy, which ensures the highest result for specified 
weights, the Greedy solution for the Knapsack Problem 
performs well in fractional contexts but less well for 0/1 
constraints. The significance of choosing the appropriate 
algorithm based on the problem type, the optimality of the 
intended solution, and the available resources is demonstrated 
by this comparison analysis. 

Performance Comparison: 
 

 
Figure 2. Comparative Flowchart on DP and Greedy [2] 

Figure 2. shows flowchart diagram of a comparison of DP and 
Greedy algorithms It is showing their decision making 
processes, time and space complexities, as well as examples 
of when to use them, basing on nature of problem [2]. 

 
IV. CONCLUSION 

A comparative study of Dynamic Programming 
(DP) and Greedy Algorithms reveals that both these 
methodologies play significant roles in solving optimization 
problems, yet each with its strengths and weaknesses [2]. 
Dynamic Programming is ideal for scenarios showing the 
existence of optimal substructure and overlapping 
subproblems-an approach that ensures optimum solutions 
through detailed exploration and the storage of results [5]. In 
contrast, Greedy Algorithms give a very efficient, intuitive 
approach with locally optimal choice making in such a 
manner that even though global optimality is not guaranteed, 
the solutions obtained become very sufficient in practical 
applications. 

The understanding of the intricacies of each method 
enables researchers and practitioners to be able to choose the 
best algorithm for their task, taking into account the trade- 
offs between computational efficiency and optimality. It has 
been shown that if the problem under consideration is a cost 
minimization problem, then the Dynamic Programming 
approach outperforms the Greedy method in deciding based 
on cumulative costs, hence an optimal solution can be given. 
According to the explicit results, the Dynamic Programming 
Algorithm outperforms the Greedy Algorithm and random 
selection in resolving resource allocation issues. This 
conclusion is based on the outcomes of a number of 
computations that used the Dynamic Programming approach 

International Journal Of Educational Research 128 (2024)

PAGE NO : 72



to solve complex optimization problems effectively and 
efficiently. 

 

V. REFERENCES 

[1] X. C., "Comparative analysis of Greedy Algorithm and 
Dynamic Programming Algorithm" published in the SHS 
Web Conf, (2022). 

 
[2] S.L. Aung "Comparative Study of Dynamic 
Programming and Greedy Method. *Recently Published*". 
International Journal of Computer Applications Technology 
and Research,, (2019). 

 
[3] Y. Wang, "Review on Greedy Algorithm," Proceedings 
of the 3rd International Conference on Computing 
Innovation and Applied Physics,, (2023). 
[4] C. E. J a R. R. Dohrmann, "A Dynamic Programming 
Approach to Rocket Guidance Problems.", American 
Institute of Aeronautics and Astronautics, Inc, 2016. 

 
[5] F. &. L. I. &. S. M. Furini presented "An Effective 
Dynamic Programming Algorithm for the Minimum-Cost 
Maximal Knapsack Packing Problem.", European Journal of 
Operational Research, (2017). 

 
[6] G. I. S. E. &. A. Sampurno, "An Analysis of the DP 
Algorithm and GA on Integer Knapsack Problem in the 
Freight Transportation". Scientific Journal of Informatics, 
Volume 6, Issue 2, December 2018. 

 
[7] Y. Wu Compare Dynamic Programming and Greedy 
Algorithms and the way to solve 0-1 Knapsack Problem. 

International Journal Of Educational Research 128 (2024)

PAGE NO : 73


